
Shape Evolution
An Algorithmic Method for Conceptual Architectural Design

Combining Shape Grammars and Genetic Algorithms

submitted by Orestes Chouchoulas Bsc (Hons)
for the degree of PhD of the University of Bath

2003

Centre for Advanced Studies in Architecture
Department of Architecture and Civil Engineering

University of Bath

This work is licensed under the Creative Commons Attribution-NonCommercial License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc/1.0/ or send a letter to Creative Commons,
559 Nathan Abbott Way, Stanford, California 94305, USA.

This thesis may be made available for consultation within the University Library and may be photocopied
or lent to other libraries for the purposes of consultation.

Orestes Chouchoulas

 ii

Abstract

It is recognised that, while computers are used widely as tools for architectural
representation, they are underused as architectural design tools. Shape Evolution is
proposed as a generic design method and software tool for supporting the initial
(concept design) stages of architectural design. It aims to inspire the architect
towards more innovative solutions to design problems by offering unanticipated,
evolved designs that both respond to the architect's stylistic agenda and satisfy the
functional requirements of the brief. Shape Evolution combines a shape grammar,
used mostly as the vehicle for aesthetics and style, with a genetic algorithm that
optimises designs with respect to their functional performance. The key interface
between the shape grammar and the genetic algorithm is a string that encodes the
sequence by which shape grammar rules have been applied to generate a given
design. This string, which uniquely identifies each design, is used as the genotype
for the genetic algorithm. This allows the genetic algorithm to operate by modifying
the sequence of rules that generated a design, not the geometry of a design directly.
Consequently, modified designs are valid in the design language defined by the
shape grammar and retain the stylistic characteristics chosen by the designer.

A prototype of Shape Evolution is developed in conjunction with a simple shape
grammar for the design of apartment blocks and a set of appropriate evaluation
routines. Tests are performed using four different sets of optimization goals. The
results demonstrate that the combination of the shape grammar and the genetic
algorithm works as desired, producing useful designs that also still satisfy the

 iii

designer’s stylistic requirements as defined through the shape grammar. This is the
case despite the need to filter out invalid individuals produced by disruptive genetic
operators, and despite the fact that the genetic algorithm is found to perform
inefficiently. Suggestions are made on how to eliminate these inefficiencies. The use
of Shape Evolution in a proposal for housing design competition is mentioned. Issues
of interface and optimized performance notwithstanding, Shape Evolution is shown
to have great potential as an architectural design tool.

 iv

Acknowledgements

Several people contributed in important ways to the work presented in this thesis
and I would like to extend my gratitude to them. Specifically, I would like to thank
Alan Day, supervisor of this project, for giving me the opportunity to pursue a
project that was personally meaningful, and for his advice and support throughout
the process. John Rollo deserves to be acknowledged for providing the initial
stimulus for this work through his undergraduate lectures on methodology of design
and shape grammars. Several researchers have helped by exposing me to their work
through papers and discussions at various stages and by offering guidance during
the initial uncertain steps. These include Terry Knight, Jose Duarte, and Benjamin
Loomis at the Massachusetts Institute of Technology, Catherine Teeling at the
University of Greenwich, Kristina Shea at the University of Cambridge, and Rob
Woodbury at the University of Adelaide. I am particularly thankful to John Gero for
his feedback on multi-objective optimisation and Alwyn Barry for his insights on the
inner workings of genetic algorithms and his help in evaluating the results of the
Shape Evolution prototype. The prototype itself would not have been possible
without the C++ hacking expertise of Alexios Chouchoulas and his readiness to
share it. Fabien Coupat’s assistance with data processing for the appendices was
vital and greatly appreciated. Finally, I would like to thank all my friends, local and
remote, for offering support, understanding, distractions, and constructive abuse
during this project and for making my PhD experience singularly enjoyable.

 v

Contents

Abstract ...ii

Acknowledgements ..iv

Contents ..v

List of Figures ...ix

1 Introduction ...1

1.1 Architectural Design is Wicked...1

1.2 Gallery of Methodologies ...3

1.3 Optimisation, Search, Evolution ...5

1.4 Criticism of Algorithmic Design ...7

1.5 Objectives of Shape Evolution ..10

1.6 Overview of Thesis ...13

2 Review of Relevant Work ...14

2.1 Introduction ...14

2.2 Computer-Based Architectural Design Tools ...14

2.3 Genetic Algorithms ..19

2.4 Shape Grammars..24

2.5 Evolutionary Generative Design Systems ..28

 vi

2.6 Combination of Generation and Evolution..32

3 Shape Evolution Overview...36

3.1 Combination of a shape grammar and a genetic algorithm....................36

3.2 Shape Code..38

3.2.1 Shape Code Ambiguity...39

3.2.2 Invalid Shape Codes...40

3.3 System Overview ..41

3.4 The Apartment Block Problem..43

3.5 Evaluation Criteria..49

4 Shape Evolution In Detail...50

4.1 Computer Implementation of the Shape Evolution Prototype50

4.2 Representation of the Phenotype ...52

4.3 Generation of the Initial Population..56

4.4 Evaluation Algorithms ..58

4.4.1 Apartment Count, Area, and Volume ...58

4.4.2 Building Height and Footprint ..59

4.4.3 Views ...60

4.4.4 Balconies ...60

4.5 Scoring...61

4.6 Selection ..64

4.7 Crossover...64

4.8 Mutation ..65

4.9 Embryogenesis...66

4.10 Shape Evolution Output ...67

5 Experiments and Analysis ...69

5.1 Example Design Intentions...69

5.2 Results ...71

 vii

5.2.1 Tower Block ...72

5.2.2 Low-Rise Block ..78

5.2.3 Views and Balconies...82

5.2.4 Multiple Criteria ...85

5.3 Analysis of Results ...87

5.3.1 Exploration Versus Exploitation ...88

5.3.2 Multi-Objective Optimisation...90

5.4 Summary..91

6 Conclusions and Further Directions...93

6.1 Evaluation of Shape Evolution Prototype ..93

6.1.1 Performance ..93

6.1.2 Usability...95

6.1.3 Utility...96

6.2 Shape Evolution in Comparison..96

6.2.1 Compared to the Programme by Elezkurtaj and Franck..............97

6.2.2 Compared to the Programme by Caldas.....................................99

6.2.3 Compared to GADES ..100

6.2.4 Compared to eifForm...102

6.2.5 Compared to the Programme by Rosenman and Gero..............104

6.2.6 Conclusions Drawn from the Comparison................................105

6.3 Further Work on the Shape Evolution Prototype105

6.3.1 Site Conditions ..105

6.3.2 Genotype Elaboration...106

6.3.3 Interface ..109

6.4 An Application of Shape Evolution ...109

6.5 Further Work on Shape Evolution ...112

6.6 Conclusions ...114

References.. 116

 viii

Appendix A Results for Tower Block Scenario... 126

Appendix B Results for Low-Rise Block Scenario .. 142

Appendix C Results for Views and Balconies Scenario ... 158

Appendix D Results for Multiple Criteria Scenario.. 174

Appendix E Shape Evolution Source Code.. 190

 ix

List of Figures

Figure 1.1: Typical student solutions to the toy problem ...11

Figure 1.2: Best human solutions to the toy problem...11

Figure 2.1: Stylised faces and the genotypes that describe them21

Figure 2.2: Flowchart describing a simple genetic algorithm22

Figure 2.3: An example of a simple shape grammar ..24

Figure 2.4: A few designs derived from the simple shape grammar25

Figure 2.5: The four possible ways of applying the rule in the simple shape grammar
...25

Figure 2.6: The use of labels to define explicit shape rules......................................26

Figure 2.7: A simple shape grammar to demonstrate emergence27

Figure 3.1: Example of simple design generated by a shape grammar.....................38

Figure 3.2: An invalid rule sequence ..41

Figure 3.3: Shape Evolution flowchart ..42

Figure 3.4: Example use of the circulation block..45

Figure 3.5: Possible internal layout for the apartment unit.......................................45

Figure 3.6: The two shapes in the apartment block shape grammar vocabulary46

Figure 3.7: The initial shape for the apartment block shape grammar46

Figure 3.8 The three basic rules of the apartment block shape grammar.................47

Figure 3.9: The 22 explicit rules of the apartment block shape grammar48

Figure 3.10: Example sequence of generation of concept design for an apartment
building using the shape grammar ...48

 x

Figure 4.1: The numerical values assigned to each cubic module in the apartment
block shape grammar ...52

Figure 4.2: An example apartment block design expressed as an array of values53

Figure 4.3: The first rule of the apartment block shape grammar with a guide
showing the direction of the vectors in a Cartesian system.............................53

Figure 4.4: The VRML model of a random apartment block design as viewed in a
VRML browser ...55

Figure 4.5: The graphical user interface developed for inputting the optimisation
goals...61

Figure 4.6: The beginning of an example HTML report output by the Shape Evolution
prototype viewed in a web browser...68

Figure 5.1: Typical curve of score plotted versus generations in genetic algorithm
results...72

Figure 5.2: Tower designs with maximum score ..73

Figure 5.3: The top three tower designs from generations 459, 462, and 461 of the
same run, using a population of 500 and a set mutation rate of 0.05, and
displaying significant similarities ..74

Figure 5.4: The results for the tower problem over 500 generations, with a
population of 500, and a set mutation rate of 0.01 ..75

Figure 5.5: The results for the tower problem over 500 generations, with a
population of 200, and a set mutation rate of 0.1 ..76

Figure 5.6: The results for the tower problem over 500 generations, with a
population of 200, and a set mutation rate of 0.5 ..76

Figure 5.7: The results for the tower problem over 500 generations, with a
population of 200, and a set mutation rate of 0.00577

Figure 5.8: Three of the highest scoring designs for the low-rise block scenario, with
scores of 2.75188, and featuring 17 apartments in 24 metre high buildings..79

Figure 5.9: The “best” design produced for the low-rise block scenario, scoring
2.736842 with 14 apartments within a height of 16m79

 xi

Figure 5.10: Some of the "second best" solutions for the low-rise block scenario,
scoring 2.684211 with 13 apartments within a height of 16m........................79

Figure 5.11: The results for the low-rise problem over 500 generations, with a
population of 500, and a set mutation rate of 0.5 ..80

Figure 5.12: The highest scoring design for the views and balconies scenario with a
score of 2.7 has 10 apartments, all with views in the desired direction, 70% of
which have balconies ..82

Figure 5.13: The results for the views and balconies problem over 500 generations,
with a population of 200, and a set mutation rate of 0.5, showing the spike
that produced the champion design ...83

Figure 5.14: The second highest scoring solution for the views and balconies
problem, with score 2.666667..84

Figure 5.15: A human-designed solution for the views and balconies problem with a
perfect score of 3..85

Figure 5.16: The two highest scoring designs produced for the multiple criteria
scenario with scores of 5.048235 (left) and 5.036162 (right)86

Figure 5.17: The results for the multiple criteria problem over 1000 generations,
with a population of 50, and a set mutation rate of 0.005, showing two
precipitous drops in the maximum score curve ..87

Figure 6.1: Design process when using the programme by Elezkurtaj and Franck;
stages represented by an orange box are supported by the software98

Figure 6.2: Design process when using the programme by Caldas; stages
represented by an orange box are supported by the software99

Figure 6.3: Design process when using GADES; stages represented by an orange box
are supported by the software ..101

Figure 6.4: Design process when using Shape Evolution; stages represented by an
orange box are supported by the software ...102

Figure 6.5: Design process when using eifForm; stages represented by an orange
box are supported by the software ...103

 xii

Figure 6.6: An apartment block generated using 512 rule applications taking the
shape of a cube by being forced against the boundaries of allowable space.106

Figure 6.7: Diagram of three strings of circulation crossing and sharing nodes.....107

Figure 6.8: A 24-rule genotype from the Shape Evolution prototype and its
reinterpretation using a more elaborate topology...108

Figure 6.9: Examples of genotypes represented by trees or general networks of
circulation units, with the apartments attached to circulation nodes108

Figure 6.10: An example of a low-cost housing block from the End Studio/Shaolin 76
entry to the Elemental competition ...111

 xiii

“You could probably do this without a computer,
but, man, would that suck!”

- David Roth,
Killing the Buddha with Genetic Algorithms,

June 2003

 1

1
Introduction

1.1 Architectural Design is Wicked
Design, and architectural design in particular, is a complex process. It involves the
application of a plethora of diverse skills in order to produce architectural form in
response to a brief. It needs the consideration of the programmatic, functional,
structural, and environmental requirements of the specific building, the intricacies of
the site, the management of resources, issues of environmental performance and
sustainability, but also matters of aesthetics, semantic signification, artistic value,
and sociological and psychological impact. Architects are expected to be masters of
all trades, equally well-versed in philosophy as in construction. This can be
evidenced in the variety of subjects taught in architectural schools, attempting to
cover all these subjects to some extent.

To add to this, design is a messy and unpredictable activity. The weaving together of
these multiple threads does not happen in a well-ordered sequence, but is riddled
with multiple feedback loops, modifying both the solution and the formulation of the
design problem. Architects are constantly moving back and forth between the brief
and the proposed design. Alterations in the programmatic requirements and the
production of spaces that respond to these requirements are not discrete tasks
happening separately and sequentially in the meeting room and at the drawing board
but are simultaneous combined tasks in the studio.

 2

In that light, it is not surprising that producing an accurate model of the design
process is a non-trivial exercise. Suggested models of the design process since
Asimow (1962) have identified its iterative nature and its reliance on feedback loops
and revision (Lawson, 1990).

Most models divide the process into episodic stages but at the same time provide
routes from each stage to previous stages. Indeed, the amount of possible routes
through the proposed flowcharts precludes the prediction of any actual sequence
used in practice, limiting the usefulness of these models. Indeed, their usefulness is
most often limited to analysis of case studies. Designers hardly use these models to
guide them when tackling a design problem in practice. The complexity of design,
and the dependence of its success on many disparate (and some initially unknown)
factors have contributed to Simon (1973) classifying design as an ill-structured or
“wicked” problem. Wicked problems, described by Rittel and Webber (1973) are
formulated tentatively, and tend to be reformulated while solutions are being
sought.

Designers are able to escape this seemingly vicious circle in ways covered by a veil of
mysticism. Often associated with some little-understood innate artistic talent or
inspiration of some unknown ethereal origin, creativity involves ways of thinking that
defy recipes. As opposed to convergent thinking, which progresses in steady steps
towards a clear goal, designers employ lateral, divergent ways of thinking, such as
launching into tangential possibility exploration (Lawson, 1990). Design students
learn the design process by osmosis, rather than in a formal and structured fashion,
and are able to use it before they can fully understand it (Wade, 1977). While
obfuscating an accurate understanding of sequence in the design process, this skill
allows an informed exploration of the space of possible solutions to a design
problem. This stochastic exploration is of key importance in wicked problems like
architectural design, as the solution space is infinite, with moving, fuzzy boundaries.

 3

1.2 Gallery of Methodologies
In design, infinite options are an impediment to progress. To a large extent, the
process of design is about constraining choice and revealing the ultimate solutions
by chiselling away unwanted options. It is often unclear whether a particular design
decision can be objectively considered better than another. Because of the amount of
possible ways to address the same (usually underspecified) brief, design decisions
seem almost arbitrary. This arbitrariness is frustrating to designers, who are striving
to create optimal or at least “good” solutions. To remove this arbitrariness, designers
need to find compelling overarching principles to direct them.

Architectural design methodologies have, over the ages, provided just this kind of
constraint, allowing architects to focus their efforts on a sliver of the solution space.
From the divine apocalypse providing the dimensions of Solomon’s temple to
Alberti’s rules in the “Ten Books on Architecture,” and from modernism to
deconstruction, designers have made an effort to limit their scope to what they deem
a more appropriate portion of the possible designs. These design movements are
herein viewed as methodologies because their theoretical underpinnings are defining
the ways by which design problems are solved and guide the designers in particular
routes through the decision tree.

Obviously, in architecture the very first set of constraints is provided by clients, as a
collection of performance criteria that the building must satisfy. There are design
methodologies, such as functionalism, that give these programmatic requirements
the chief role in decision making. The same is true in designs driven by optimisation,
such us hospital plan layouts. Other methods might use psychology to suggest
spaces that produce desirable effects in their users. However, in most design
projects there exist various secondary or implied design goals that may not be
present in the clients’ specifications.

Designers are sometimes celebrated as artists, chosen by clients on the evidence of
their own design sensibilities as witnessed in the body of work they have completed

 4

in the past. These sensibilities might be manifest consistently in their designs and
therefore form the core of a designer’s style. It can be argued, for example, that
Frank Gehry’s building designs are informed by his desire to produce sculptural
forms, beyond the satisfaction of purely programmatic requirements. These artistic,
philosophical, or stylistic choices are clearly subjective, vary greatly from designer to
designer, and are susceptible to changes in fashion. They can be said to represent
the zeitgeist as perceived by each designer, but might also be based on personal
memories and experiences. No matter what informs them, these design sensibilities
provide first principles against which the designer judges potential solutions to
design problems.

Furthermore, the ultimate shape of an architectural design will often be influenced
substantially by political, social, and economic considerations. For example, Rococo,
Nazi and communist buildings have features that associate them to the types of
regimes they represent; religious architecture intends to elevate the spirit as well as
house a congregation. It might also be desirable to design buildings that are less
than optimal in terms of economising resources, for the benefit of providing lavish
displays of economic power. Alternatively, a building that represents ecological
thinking might help boost a company’s public image.

Mathematics have also been employed in the search for design perfection. How does
one decide the size of a room the dimensions of which are not constrained by need
or site? Architects have looked for the answers in the dimensions of an idealised
human form, harmonic ratios, and the Fibonacci series. Algorithmic design is a more
recent expression of the need to rationalise aspects of a design, relying on
quantifiable programmatic constraints to define form, taking away the guesswork.

Programme, function, psychology, style, fashion, art, philosophy, creed, economics,
politics, and mathematics all shape designs, but their role in the process of design is
to constrain decisions. The most direct way to achieve this is to follow design
recipes, in other words learn from precedents and opt for that which is tried and

 5

tested. Alberti’s Ten Books, Christopher Alexander’s Pattern Language, and Feng
Shui all give instructions on how to design spaces. The advice is often presented
dogmatically and without the reasoning behind it, but in all it represents rules of
thumb leading to good practice and decent buildings.

The choice of method by which to guide design decisions is a very personal one and
it often defines the designer. Furthermore, a particular project may be calling for the
use of a specific methodology, whereas other methodologies might be entirely
inappropriate. Therefore, evaluating each of these methodologies individually would
be ineffective. The choice is part of the designer’s creative contribution. What is
useful, for the scope of this research, is to place algorithmic design in this context,
and realise what it offers in terms of helping the designer reach his ultimate
solution.

1.3 Optimisation, Search, Evolution
Computers, though widely accepted as very powerful tools in many disciplines, are
generally underused in the field of architecture. While the vast majority of
architectural practices are using computers, they are treated, in most cases, as
elaborate drawing boards. Their purpose is to mimic traditional tools such as pen
and paper. They are made to perform the same tasks, only in ways that are more
efficient. Recently, emphasis has been placed on the ability of computers to
represent and allow the specification of complex three-dimensional forms, as for
example in Perrella (1998). This addresses some of the shortcomings of traditional
drafting tools, but it does so by replacing them with new drafting tools. There seems
to be room for improvement where it comes to harnessing computational power to
assist architects in a more “intelligent” and active manner. True Computer-Aided
Design systems, as opposed to Computer-Aided Drawing systems, although
technically feasible, are still scarce.

Computers are good number-crunchers, which suggests that their strength lies with
dealing with the quantifiable aspects of design. There are a number of software

 6

packages available currently that are based on this principle of calculating quantities.
As such, these programmes are well suited to engineering applications, like
calculating light levels and reverberation times in a space, or sizing structural
members. However, this is engineering analysis software. It is typically employed in
the later stages of the design process in order to evaluate or fine-tune the design;
its impact on the final design is vital, but minimal. Pairing analysis with a generative
mechanism would easily allow the quick generation of appropriate or feasible
designs. This combination of analysis and synthesis was in the focus of CAD
research in the sixties, mostly in the field of generating spatial configurations by
optimising for one or more performance criteria (Cross, 1977).

However, optimisation does not solve design problems; it improves potential designs
that are already resolved to a great extent. Optimisation only modifies designs by
making small quantitative changes and cannot arrive at a better solution by making a
qualitative jump. Therefore, the utility of this process is lessened during the concept
design stages and it has little impact on the most important design decisions.

Seen from an algorithmic process point of view, optimisation is just one of the ways
to see the route from concept to finished design. Design can also be seen as a
search operation. In a so-called problem space, each point represents every possible
solution (Newell et al., 1967). For design problems, each point in a design space is a
potential design. In this model, the way by which the ultimate solution is derived is
by searching through the problem space for the optimal or satisfactory solution
(Kanal and Cumar, 1988).

The practical problem with this view is, of course, that the problem spaces for most
design problems are infinite. What is required is a very robust search algorithm that
can search through very large, or infinite spaces in an efficient manner. Since in
infinite spaces not all possible solutions will be checked, the search algorithm will
need to be stochastic. Furthermore, the search parameters need to be semantically
cogent enough for the search to be meaningful in design terms. That implies a

 7

thoroughly worked out representation system that would sufficiently specify the
design solutions.

Another way to consider design in an algorithmic framework is design as evolution.
According to this view, the ultimate design is produced by a process mimicking
natural selection, by evaluating the performance of each contender design in an
artificial environment. By making small changes and re-evaluating designs over a
number of generations there is a gradual improvement to the appropriateness of the
design. Genetic algorithms (Holland, 1975) and simulated annealing, and its
application in design in the form of shape annealing (Cagan and Mitchell, 1993)
employ this method.

Although evolution in biology is not goal-driven, it exhibits characteristics that
resemble a computational process (Pinker, 1997). Thus useful results may be
produced by modelling an evolutionary system and manipulating parameters
accordingly. Specifically, beyond an appropriate modelling of the operations involved
in evolution, such as mutation, a careful definition of the environmental conditions
will be necessary to ensure good results.

1.4 Criticism of Algorithmic Design
Criticism to the use of computers in architectural design has been plentiful since its
possibility arose. Lloyd Kahn, editor of the Shelter books in the early seventies
dismissed computer-designed architecture as an effort that “will only produce
environments that machines or machine-like people will want to inhabit” (Kahn,
1973). This attitude may have been partly technophobic, and seems to share
common threads with the earlier fear of dehumanisation that would have been
brought about by industrialisation. However, there is also the concern that
computers, calculating machines that they are, are only capable of contributing to
the design process as much as “an army of clerks” (Alexander, 1965). How can a
rich, unpredictable process such as design be encompassed by something as
deterministic as calculation? Similarly, the poor quality of early computer graphics

 8

led architects to reject CAD drawings as crude, simplistic, and incapable of nuance at
least as late as the late nineties in this author’s experience. This criticism has its
roots in the difficulty in prognosticating regarding the future capabilities of
computer technology, and specifically in the counterintuitive observation that a
simple difference of degree such as the increase in computational power can yield a
qualitative difference. However, there are threshold points beyond which computers
are no longer thought of as powerful calculators anymore. To the large percentage of
people for whom using computers is a part of life, the enabling power of their digital
tools seems to be far beyond calculation. It is now easy to accept that the use of
computers in the design of a building does not necessarily create drab, gridded,
clinical spaces. Progress in the understanding of complex systems has shown that
unexpected patterns can emerge from simple deterministic rules. Computer
generated drawings have the capacity to be crude and simplistic, or beautiful and
evocative, the primary factor being the skill of the draughtsman. Computation has
superseded this early criticism.

During the course of this research there has been criticism of algorithmic design
methodologies from colleagues who contend that the resulting designs are devoid of
meaning. Indeed, human designers infuse their work with semantic content drawn
from their extensive cultural, aesthetic, and philosophical baggage. The outcome of
the design process is presented as a clear consequence of an initial vision. This
results in a lively diversity, which, in the view of this author, is to be celebrated.
However, one must not confuse the method for the designer. Computers, usually the
means by which algorithmic processes are employed, are merely tools. The
computer’s output is always deterministically dependent on the programmer’s and
the user’s input. For the purposes of this research, algorithms are just tools among
many at the designers’ disposal. The choice of method and tools by the designer is a
fundamental design decision that is highly semantic in itself and greatly affects the
finished design’s significance. Simon (1971) remarked that decisions about the
design process may inform what we call style as much a teleological concept of the

 9

final design’s miscellaneous properties. The accurate and scientific way by which
algorithms produce results may suit some designers better than more free-form or
artistic approaches. A designer opting for an algorithmic approach method is making
a statement that defines him or her.

A further common concern is whether the logical conclusion of the use of
algorithmic design processes will lead to the complete removal of the human
designer from the loop (Watanabe, 2002). Certainly, the human designer will be
needed for the near future to decide on the use of algorithmic processes to begin
with. But more importantly, the role of the designer is likely to evolve in tandem with
the designer’s tools. De Landa (2001) sees the designer working with genetic
algorithm-based tools as a metallurgist, guiding the evolution of form in the same
way as a craftsman controls the intensive properties of a material in order to tease
the form from it. He calls for architects to become aware of computer programming,
biology, thermodynamics, mathematics, and other disciplines that can provide the
means to harness processes and guide the emergence of designs (De Landa, 2002).
He further identifies that this necessitates a shift away from considering design as
the forming of a single artifact and towards “populational, intensive, and topological”
thinking. This view of the designer as a controller of processes is also shared by
Leach (personal communication, 18 February 2003).

Far from being “just a formal game” (Stiny, 1998), algorithmic and rule-based
processes allow designers to manipulate their designs on a meta level. Instead of
modifying geometry and then testing the effects of the modifications, with
algorithmic tools it is possible to define the effects desired and let the appropriate
geometry emerge from that. This is a significant change in the way designers work
and think. It has the potential to improve the artificial world, firstly by allowing
designers to be aware of the performance-related effects of their choices, and
eventually by letting them manipulate the effects directly.

 10

1.5 Objectives of Shape Evolution
What is interesting is how these algorithmic tools might be used and what potential
benefits they might bring to the process of design. The aim of this project is to
investigate the use of computers in a way that engages more with the design
process, assisting in design generation as opposed to merely design representation,
and to ultimately propose a software tool for architectural concept design.

To be practical for its potential users, such a tool will need to match and surpass the
utility offered by more traditional, tried-and-tested methods. It should, for one, be
generic, i.e. applicable to a wide variety of design problems. It should exploit the
large computational power of computers by dealing automatically with quantifiable
characteristics of design, thus helping users avoid following dead-end routes to
impractical or unfeasible solutions. This way, the tool could allow its users more time
for creative exploration, which it should also support. But how?

The process of architectural design is typically supported by a large amount of
background information, including anything that might have been absorbed during
the seven-year educational process required before a new architect may qualify.
However, it is recognised that the production of innovative design solutions is not
dependent on knowledge of a direct mechanism that leads from requirements to
solutions (Rosenman, 1997a). Indeed, preconceived notions tend to limit one’s
capacity for innovation and efficiency. Take, for example, a simple layout problem
defined as follows:

Given a 10×10 grid, place as many 1×1 squares (houses) on

that grid as possible. The squares need to have at least one
adjacent space free. All the free space on the grid must be
contiguous.

The problem approximates the placing of houses on a square site. The first
constraint ensures that all houses are accessible and will be referred to as the

 11

adjacency constraint. The second constraint, referred to as the contiguity constraint,
ensures that every house on the site is accessible from any point on the site by
ensuring there are no closed courtyards.

The expectation is that human solutions, representing the use of prior knowledge to
tackle this problem, will sacrifice efficiency for clarity and order. Computer solutions
using an approach that does not rely on knowledge are expected to be more efficient
and random-looking. The following are three typical human solutions provided by
architectural design students:

Figure 1.1: Typical student solutions to the toy problem

These are three of the best solutions:

Figure 1.2: Best human solutions to the toy problem

These results seem to justify expectations. It is obvious that some of the typical
solutions are guided by a desire to adhere to a salient construct (stepping, rows, and
a spiral construct are represented in the typical results). The best solutions are
sacrificing clarity of layout concept for small areas of singular adjustments to achieve
greater efficiency.

43 55 58

61 61 61

 12

 Furthermore, much in the way that exposure to more kinds of music alters one’s
appreciation and taste of music, exposure to new kinds of design solutions informs
the designer’s collection of sought-after qualities in designs (Simon, 1996). In this
light, creative exploration can be supported by having the tool propose atypical or
unanticipated (yet functional) solutions to the user, allowing him or her to break out
of creative ruts, and encouraging innovation. For that to happen, there needs to be a
sufficient separation between the user’s input and the programme’s output so that
the results cannot be easily predictable. Furthermore, the tool should be reasonably
fast and user-friendly, to facilitate the evaluation of numerous solutions by the
designer, and subsequent tweak-and-run cycles that may be necessary.

Finally, it should be able to accommodate the designer’s established stylistic and
aesthetic preferences. This would ensure that the designer gets more gratification
out of the tool, but also that the products of the tool do not share common
characteristics that can be directly associated with its use. That would, of course, be
perceived as a limitation of the tool. In an infinite problem space there exist infinite
solutions that satisfy the functional requirements. The choice of the right solution
among those should be made by the designer, not dictated by the tools.

This is in line with a view of architectural design as a largely serendipitous, rather
than goal-oriented, process: an investigation of alternatives. The brief must be
satisfied of course, but the architectural solution is not connected to the brief in a
deterministic cause-effect relationship (as some modernists have claimed). It is
expected that different users employing this tool for the same project should reach
remarkably different solutions.

The tool’s function would be to quickly suggest a number of concept designs that
when refined will produce functional building designs. As such, it is positioned right
after the problem definition in the design process. However, it would eliminate
several feedback loops by ensuring that most of the functional resolution happens
concurrently with the concept design.

 13

1.6 Overview of Thesis
The next chapter will open the discussion with an overview of work related to the use
of algorithms in architectural design, with a focus on evolutionary strategies.
Chapter 3 will introduce the general structure of Shape Evolution as a method and
discuss the innovative way by which a shape grammar and a genetic algorithm can
be meaningfully combined. Chapter 4 will delve further into the mechanisms of
Shape Evolution, and describe how prototypical implementation for the design of
apartment blocks works. Tests using this prototype are described and their results
are analysed in chapter 5. Finally, in chapter 6, the prototype will be evaluated and
improvements will be proposed, topics for further research will be outlined, and
general conclusions will be drawn.

 14

2
Review of

Relevant Work

2.1 Introduction
This thesis describes the development of a prototypical computer implementation of
Shape Evolution, a tool to support the concept design stage of architectural design.
Shape Evolution combines aspects from two strands of computational design
research: one deals with formal syntactic approaches to analysis and generation, and
the other with evolution and self-organisation. This chapter outlines and reviews
research done in these fields, setting the scene and leading up to Shape Evolution.

Early efforts to produce computer-based architectural design tools will be presented
and reviewed, followed by brief explanations of genetic algorithms and the shape
grammar formalism, both of which have received a lot of attention in the field of
design research. Existing design tools based on an evolutionary paradigm will be
reviewed next, followed by systems combining evolution with meaningful
representational frameworks, much as Shape Evolution proposes.

2.2 Computer-Based Architectural Design Tools
There have been numerous attempts to create computer-based, generative tools for
architectural design. Several different approaches and various methods have been
employed, each with its strengths and limitations. Indeed, such efforts go back to

 15

the early days of computers and computer-aided design, with an effort by Moseley
(1963) to produce improved (i.e. lower-cost, in this case) building layouts through a
quantitative analysis of circulation requirements. Moseley’s linear programming
implementation generated concept massing designs that focused on the placement
of components and vertical circulation. Her approach made several crude
assumptions in order to fit the example problem to the method employed.

Referencing Moseley’s work, Whitehead and Eldars (1964) addressed some of its
limitations on a similar space layout problem. Their work produced suggested
hospital plans based on data on the movement of nurses, surgeons, and other
hospital personnel. The authors claim that careful planning can reduce movement
between rooms by 25%, which corresponds, by their calculations, to a 8.5% saving in
salaries. The building users’ movement is therefore taken as a prime consideration
for internal planning decisions, if the stated goal is to produce a more economical
design. Perhaps the most problematic aspect in their programme is that it relies on
the collection of movement data from similar, existing buildings under use, rather
than computer simulation. This data is then used to determine the level of
interaction of each room with other rooms. The synthesis process consists of placing
the room with the highest level of interaction in the centre of the plan, placing the
room that most interacts with it adjacent to it, then the room that shares the most
interactions with the two rooms already placed is positioned next to both of them,
and so on, until the least “interactive” spaces are arranged in the perimeter. The
placement of rooms beyond the second one is done though a trial-and-error process
that evaluates the “cost” (in resulting journey length) of each possible positioning
and selects the most cost-efficient. Cross (1977) notes that, due to the lack of a
determinate solution strategy for problems of this kind, the generated solutions are
not optimum, but near-optimum.

A similar approach was taken by the STUNI programme (Willoughby et al., 1970,
Willoughby, 1970), initially geared towards producing designs for the campus of
Stirling University. STUNI incorporated several improvements over the Whitehead and

 16

Eldars offering, including, crucially, some amount of user interaction. Furthermore,
STUNI introduced a wider range of criteria informing the arrangement of elements,
including site conditions.

The Basic Architectural Investigation and Design Programme One, or BAID-1 (Auger,
1972), which also took site conditions into account, was developed at the University
of Leicester. Its initial purpose was to enable medium-rise high-density housing
developments as an alternative to bland high-rise buildings by making it easier to
produce configurations compliant to British planning controls, the difficulty of
applying these controls having been identified as one of the key obstacles towards
more differentiated medium-rise projects. Specifically, the programme ensured that
designs receive the minimum amount of daylight and skylight incident on windows
specified in the building regulations. The programme produced designs by placing
building elements randomly, and then checking for compliance with regulations. If
the placement of an element failed the compliance test a new random position was
chosen. In this way, the programme effectively conducted a random search of the
problem space, looking for acceptable solutions. It follows that the design produced
at each run would just be an instance of a successful design, and not an optimum.
Auger himself commented that the products of BAID-1 should be considered stimuli
to the designer’s own ideas. This way of using the programme was served by the
increased level of interactivity, allowing the user to freeze the positions of building
elements that have been placed to his or her satisfaction, then letting BAID-1 come
up with a new random configuration for the remaining elements. Of course, a
significant amount of work needed to be done by the designers in order to interpret
and adapt the computer output into realisable designs. Auger’s flowchart for the
design process using BAID-1 delegates the analysis of computer output to the
human designer, after which follows “manual completion.”

These early efforts, and projects that followed them like CEDAR (Chalmers, 1972)
and SPACES (Th'ng and Davies, 1975), which included the synthesis component
SPACES 2, were limited in scope and dealt with very specific design problems from

 17

very specific viewpoints. They also shared the requirement for the involvement of the
user for manual completion of the design. That places them firmly in the concept
design stages of the design process. However, Lawson (1990) comments that
whatever solution the computer might have offered that satisfied the constraints
tackled by the programme would have to be altered significantly by the designer in
an effort to make the design more responsive to other criteria. In this way, the
computer is given the upper hand in the design process, with the human designer
subsequently attempting to reshape the computer output into something useful.
This seems to contradict the original intention of these programmes, which was to
provide support to the designer and allow him to make more educated decisions.
Clearly, such programmes must support the specification of any arbitrary number of
criteria.

Another common thread connecting these projects is that they concern themselves
with the space layout problem (Cross, 1977). This is of course a key problem in
architectural practice. It is also ideal for investigation using computer programmes,
because most space layout problems are intractable, i.e. there is no deterministic
solution strategy that guarantees optimal solutions.

At the same time, the Massachusetts Institute of Technology was home to a much
more radical and ambitious approach to the use of computers in architectural
design. Instead of focusing on tools that support the design process, the goal was to
produce programmes that solved design problems by demonstrating designer-like
intelligence. The first fruits of this effort were the part of the URBAN series of
programmes, of which URBAN 5 (Negroponte, 1967) was the culmination. URBAN 5
was meant to act as a partner to the designer. While the operator used a rudimentary
graphical interface to design by configuring cubic modules, the computer
“monitored” the process, interrupting with suggestions or warnings, or providing
information when asked, all based on predetermined criteria. Negroponte describes
the interaction with the machine as being a conversation, the aim being to produce
“responsible architecture” through a system that allows the consideration of many

 18

important criteria affecting design decisions at the same time. Telling, perhaps, of
the ambition to eventually develop this programme into a complete artificial
intelligence, was the effort put into ensuring that the input of criteria and the
“conversation” between the machine and its user during design exploration was
conducted in English. However, like most early efforts at writing programmes that
displayed human-like intelligence, URBAN 5 did not: its responses to design issues
were burdened by the preconceptions of its programmers (Negroponte and Groisser,
1970). Made up of specific algorithms, it was incapable of applying its “skills”
generically.

This lead to the creation of the Architecture Machine Group in 1968, with the stated
goal of creating an intelligent machine for the purposes of architectural design.
Mirroring the situation in mainstream artificial intelligence research, the group made
progress in sub-problems such as human-machine interfacing and visual
recognition, clearly indicating their intention to eventually produce a robotic
architect (Cross, 1977), believing that this was the way towards innovation in
environmentally responsive architectural design. The Architecture Machine Group
was later subsumed into the MIT Media Lab.

This course of research has very ambitious aspirations. Indeed, some argue that the
goal of creating an artificial intelligence is fundamentally unattainable (Dreyfus,
1972), arguing that Pinker’s view of the mind as a computation machine (Pinker,
1997) is flawed. Artificial intelligence research is steering away from attempting to
emulate human-like intelligence by stringing together a large number of specialised
machines. Spurred on by discoveries in complexity theory and cognitive science,
intelligence is now thought to emerge out of complex interactions between relatively
simple components (Fogel, 1995, Johnson, 2001). However, artificial intelligence
research has also produced some very practical methods for dealing with
uncertainty, ambiguity, and fuzziness that have found applications in many fields.
The methods discussed in section 2.5 have their roots in this work.

 19

Commercial CAD packages have recently started offering advanced tools that go
beyond the representation of designs. Bentley’s Microstation includes a feature
called Dimension-Driven Design, which allows the parameterisation of design
elements, and therefore provides a quick way of exploring design alternatives. This
has been used by the architectural practice of Foster and Partners for the Swiss Re
Headquarters and the Gateshead Music Centre (Constantinou, 2001). Catia software,
created jointly by Dassault and IBM for the aeronautical industry, and famously
appropriated by Frank Gehry for projects like the Guggenheim Museum in Bilbao
(Mitchell, 1999), includes tools for engineering analysis and integration with
Computer Aided Manufacturing (CAM) equipment, as well as advanced modelling
tools. Genesis, the design system used by Boeing, combines geometric modelling,
assembly hierarchies, a high-level specification of constraints, evaluation criteria,
and design generation facilities in the same representation (Heisserman et al., 2000).
These solutions, however, support the design process in its later stages, long after
key decisions on form have solidified. Consequently, while they might be able to
improve on the minutiae of a particular design, they cannot bring radical innovation
in the process or allow a rethinking of the design at the conceptual level.

2.3 Genetic Algorithms
Genetic algorithms were developed in the 1970s by John Holland (Holland, 1975) in
an effort to formally understand biological adaptation in nature. Much like the
organisms they were meant to study, genetic algorithms have since taken a life of
their own and have been proven robust in tackling optimisation problems as well as
exploring very large search spaces (Goldberg, 1989). This makes them appropriate
to the solution of design problems when these are represented as a search through a
design space. As mentioned already, this analogy is derived from the definition of a
problem as a search through a space of knowledge states, some of which represent
solutions to the problem (Newell et al., 1967). In the same fashion, design problems
can be thought of as a search through a design space whose elements are designs.
Some of these designs are appropriate solutions to a design problem and some are

 20

not. The design process can then be seen as a search for the optimal solution (Kanal
and Cumar, 1988). Genetic algorithms can also cope with infinite problem spaces,
which design spaces often are. For example, all the designs within a design language
specified by a shape grammar can be elements of a design space. Some of these
designs are better in addressing the design problem at hand.

The main strength of genetic algorithms as problem solvers is that they do not
require an explicit optimal solution generation method, relying instead on a
generate-and-test process. They are therefore well suited to solving intractable
problems. In the place of an explicit solving strategy, genetic algorithms merely
require a way to evaluate solutions. That is achieved by an objective function that
can assign scores to solutions according to how well they address the problem. If the
problem can be expressed in terms of quantifiable goals then an objective function
can be produced. The only other element required by a genetic algorithm is an
initial, random selection of solutions to work on, i.e. random starting points in the
problem space.

Genetic algorithms operate on representations of solutions, not the solutions
themselves. In keeping with the biological metaphor, solutions are called phenotypes
and their coded representations are called genotypes. Phenotypes can be encoded as
genotypes in several ways: strings, n-dimensional arrays, lattices, topological
graphs, etc. The facility to work with such diverse data structures enables genetic
algorithms to tackle a great variety of problems. To demonstrate the process of
encoding solutions as genotypes, the shape of the features of a face can be encoded
in a four-bit binary string, where the digits represent the shapes of the head, eyes,
nose, and mouth sequentially. The value 0 specifies a round shape, whereas the
value 1 specifies a rectangular shape. Example faces and their corresponding
genotypes are shown in Figure 2.1 below.

 21

Figure 2.1: Stylised faces and the genotypes that describe them

The process by which the coded genotype is translated into the phenotype is called
embryogenesis. In this case of the stylised faces, each digit corresponds to a feature
of the phenotype. Borrowing the terminology from biology, a segment of the
genotype that contains the information for a particular feature of the phenotype is
called a gene, whereas the values that a gene can take are known as alleles.

Vital to genetic algorithms are the crossover and mutation operators. These operate
on the genotypes, and mimic their counterparts in natural evolution. Crossover is the
process of splicing together the genotypes of two “parent” solutions to produce
offspring that combines the characteristics of both parents. Take for example the
two eight-digit binary genotypes 110|01110 and 011|01011. The vertical line
represents the crossover point. Splicing these two genotypes together gives us the
“child” genotypes 110|01011 and 011|01110. Mutation is applied randomly to the
offspring, changing parts of the genotype. For example, a mutation can change the
genotype 11001011 to 11011011.

This flowchart illustrates how a simple genetic algorithm works:

Phenotype

Genotype 1011 0101 1010 0000

 22

Figure 2.2: Flowchart describing a simple genetic algorithm

An initial population of genotypes is generated at random. Each member of this
population is evaluated for fitness by use of the objective function and a fitness
value is attached to it. Higher scoring individuals are selected as parents and
produce offspring by crossover. A small amount of mutation is then applied to the
offspring. That produces the new generation of solutions, which in turn is evaluated
for fitness and the system loops. The loop is broken when the termination conditions
are met. The termination conditions might be the generation of an individual that
surpasses a fitness threshold value (a “sufficiently good” solution), or the completion
of a specified number of generations.

The genetic algorithm works by gradually improving the fitness of solutions with
each generation. Like in natural selection, the characteristics of unsuitable
individuals are not perpetuated while fit individuals are allowed to pass on their

Start

Generate initial
population

Evaluate
population

Select
parents

Apply
crossover

Generate
offspring

Apply
mutation

Evaluate
population

End
conditions

met?

Yes

Stop

No

 23

features. Holland’s Schema Theorem (1975), later elaborated by Goldberg as the
Building Block Hypothesis (1989) attempts to explain this process more rigorously
through the study of schemata.

Schemata are in essence templates representing groups of genotypes that exhibit
similarities. For example, using four binary bit string genotypes, the schema 01**,
where the asterisk is a wildcard symbol represents the genotypes 0100, 0101, 0110,
and 0111. If these genotypes represent the stylised face phenotypes mentioned
above, the schema 01** describes all faces with a round head and rectangular eyes.
Schemata have two significant characteristics: The order of a schema is defined as
the number of fixed bits in the template. For example, the schema **0*10** is of
order 3, and the schema 1101**1* is of order 5. The defining length of a schema is
the distance between the furthest two fixed bits in it. So the defining lengths of the
schemata **0*10**, 1101**1*, 0******1, ****1*** are 3, 6, 7, and 0 respectively.

The Schema Theorem states that highly fit schemata of low order and short defining
length will be found in exponentially increasing copies in each population. These
schemata are referred to as building blocks. The Building Block Hypothesis proposes
that genetic algorithms produce better scoring individuals by combining building
blocks into whole genotypes. There is an ongoing debate about the validity and
usefulness of the schema theorem (Mitchell, 1996, Christiansen and Feldman, 1998),
but it serves at least to give an insight into the reasons why genetic algorithms seem
to work.

The general flowchart and operators described above pertain the simple genetic
algorithm (Goldberg, 1989). There exist several elaborations of the basic algorithm,
which can be more appropriate to different types of problems. Bentley (1996) lists
some of these advanced types of genetic algorithms. These tend to modify the way
genotypes are encoded and manipulated through the used of more exotic versions of
the genetic operators mentioned above.

 24

2.4 Shape Grammars
The shape grammar formalism was introduced in the early seventies by George Stiny
and James Gips (1972). The linguistic metaphor that permeates shape grammars is
the result of their foundation on the work of Noam Chomsky (1957, 1965) on
generative and transformational grammars in linguistics. Their function is to specify
classes of designs through an algorithmic understanding of the processes that
generated them.

A shape grammar consists of a vocabulary of shapes (with or without labels), a set of
shape rules, and an initial shape. The rules are presented as transformations of a
shape or collection of shapes (shown on the left hand side) to a new shape or
collection of shapes (shown on the right hand side). Applied recursively on an initial
shape, the rules produce designs that are said to belong to a language (Stiny and
Gips, 1972, Stiny, 1975).

To illustrate the shape grammar formalism, consider the simple shape grammar
defined in Figure 2.3 below. The vocabulary of shapes consists of a single rectangle
of ratio 1:2. There is a single rule, which places another rectangle adjacent and
perpendicular to the first. The rectangle, being the only shape in this grammar, also
serves as the initial shape. Figure 2.4 shows a few designs belonging to the language
defined by this simple shape grammar.

Figure 2.3: An example of a simple shape grammar

Vocabulary of
shapes

Shape rule Initial shape

 25

Figure 2.4: A few designs derived from the simple shape grammar

The shape rule states that if recognised in the design, the shape on the left hand
side should be transformed to the configuration on the right hand side. However, the
left hand side may be recognised in any of its isometric transformations, i.e. its
scaled, translated, rotated, and reflected forms, or combinations of these (Mitchell,
1990). With the spatial relationship defined by the rule in the example shape
grammar, and as a result of the symmetry properties of the rectangle, the rule can
be applied to each rectangle in the design in four different ways, as shown in Figure
2.5.

Figure 2.5: The four possible ways of applying the rule in the simple shape
grammar

To control and direct the application of rules in light of this ambiguity, labels may be
employed. Labels specify where and how a rule will be applied, removing ambiguity
caused by symmetry. Figure 2.6 illustrates the use of labels to define explicit shape
rules. In this case, the white dot is the label. It marks one of the corners of the
rectangle, thus removing its symmetry properties under reflections and rotations.
Four different explicit rules can then be defined for the placing of a new rectangle in
the same spatial relationship defined in Figure 2.3.

 26

Figure 2.6: The use of labels to define explicit shape rules

A key characteristic of the shape grammar formalism is that the vocabulary shapes
are not treated as discrete objects, but as collections of geometrical entities. This
makes it possible to recognise and consider non-predefined shapes in the designs,
formed by the relative positioning of these geometrical entities. These emergent
shapes can then be used in shape grammar calculation, i.e. they can have rules
applied to them. The term emergence, when used in a shape grammar context,
refers exactly to the formation of these new shapes (Stiny, 1994, Knight, 2003).
Figure 2.7 shows a simple shape grammar that demonstrates emergence. In the
spatial relationship defined by the single rule of this grammar the overlapping of two
1:2 ratio rectangles creates a shape where six 1:2 ratio rectangles can be recognised:
the two original rectangles plus the four smaller ones created by an exclusive-or
logical operation between the two original rectangles. Those smaller rectangles are
emergent shapes. Because the left hand side of the shape rule consists of a 1:2
rectangle, it can be applied to the emergent rectangles, producing designs like the
one presented in Figure 2.7.

 27

Figure 2.7: A simple shape grammar to demonstrate emergence

Initially developed to provide insights into the cognitive mechanisms of the design
process (Gips, 1979), shape grammars have, since their inception, used both in
analysis and synthesis. In terms of analysis, they have been called to serve as
descriptors of style. If shape grammars are to be sufficient in defining a style, they
need to satisfy three “tests of adequacy” (Stiny and Mitchell, 1978). First, they must
make apparent and describe the “underlying commonality of structure and
appearance” among instances in a corpus of work. Second, they should provide a
mechanism for identifying whether a particular design is an instance of the style
under consideration. Finally, they should supply a method for generating new
designs within that style.Shape grammars have been successful in these respects as
applied analytically to the definition of historical styles including Palladian villas,
Queen Anne houses, Frank Lloyd Wright Prairie houses and window designs,
Japanese tearooms, Mughul gardens, and Hepplewhite chairs (Knight, 1994).

Another stated aim of the shape grammar formalism is to provide the mechanism for
the creation of new design languages, i.e. new design styles. That is achieved simply
by creating a vocabulary and a set of rules from scratch. The use of shape grammars
in a generative, instead of an analytical capacity is of particular interest. Its
advantage is that a very simple grammar with a limited vocabulary and few rules can
create significantly complicated and unanticipated results (Rowe, 1987). As such,
shape grammars are potentially a very useful tool for design innovation.
Furthermore, a look at shape grammar applications attests to the great diversity of

Initial shape Shape rule

 28

design languages that they are capable of defining. Indeed, Stiny (1975) shows that
they are theoretically capable of producing any possible design. These characteristics
of shape grammars make them ideal for use in a generic design tool with innovation
as one of its main goals. There are fewer actual examples of generative applications
of shape grammars, with Alvaro Siza’s Malagueira housing project being prominent
among them (Duarte, 2001), although they have been used extensively for students’
projects in schools of architecture.

There has been ongoing research on the various aspects of the shape grammar
formalism since its inception, 30 years ago. Still, a complete computer
implementation of a generic shape grammar system has been elusive. This is mainly
due to the algorithmic complexities of coding emergence, as seen for example in
one of the sub-problems dealt with by Tapia (2000). As a result, many of the current
shape grammar parsers tend to disregard emergence altogether (Chase, 2000a). The
most promising shape grammar parser currently in development is the two-
dimensional GEdit by Mark Tapia (Tapia, 1999, Knight, 1999, Chase, 2000a). Tapia is
currently working on a new three-dimensional parser, which at the time of
submission of this thesis is not yet very usable. However, a generative design tool
based on the parsing capabilities of Tapia’s programme could potentially produce
very successful results. Knight (1999) and Chase (2000b) also point out that
interface problems stand in the way of the acceptance of current shape grammar
parsers by non-programmers. Despite these difficulties, research on shape
grammars has plenty of momentum, and it seems only a matter of time before a
usable generic tool emerges.

2.5 Evolutionary Generative Design Systems
In recent years, and further spurred on by the publication of Emergence (Johnson,
2001) and the evocative work on complexity theory coming out of the Santa Fe
Institute, architects have been keen to employ techniques that do not take a
structured, goal oriented approach to the production of form. Instead, form is

 29

expected to emerge out of a set of given conditions in an organic way (Rahim, 2000,
Rahim, 2002). Computer scientists have long been working with systems that display
emergent behaviour, using autonomous agents, self-organising elements, cellular
automata (Wolfram, 2002), and evolutionary models. Evolution is particularly relevant
as it “exemplifies the ‘explore, evaluate, and refine’ subprocess of architectural
design and its overall non-linear nature” (O'Reilly and Ramachandran, 1998).

Some interesting work that is evocative of the applicability of these techniques to
design problems should be mentioned. Richard Dawkins (1986) developed a simple
genetic algorithm, guided by user selection of preferred designs, generating two
dimensional drawings (“biomorphs”) reminiscent of plants and animals. Particularly
suggestive of the possible applications of these systems in design was William
Latham’s artwork (Todd and Latham, 1992, Todd and Latham, 1999), produced
using evolutionary techniques, and displaying forms that resembled biological
organisms. Subsequently, a plethora of such examples of “genetic art” appeared in
the 1990s, usually aiming only to produce interesting abstract images (Rowbottom,
1999). In a different vain, Karl Sims’s “creatures” (Sims, 1994a, Sims, 1994b),
although composed entirely of simple parallelepipeds, displayed remarkably life-like
behaviour, which was evolved by breeding successive generations in a virtual
environment.

Evolutionary tools have in fact been used extensively in design, particularly in
engineering, but only in order to optimise existing designs. Bentley (1996) lists
numerous examples of such applications in engineering design. It should be noted
that evolutionary techniques have also been employed for the optimisation of parts
of architectural design. “Evolve” (Cawthorne and Sparreboom, 1995) produces variant
forms of a building design starting with the input of simple CAD drawings. The
alternatives are evaluated in terms of einvironmental performance and construction
cost, but the choice is made manually by the user. More variations on the newly
selected design is then displayed and the process is repeated until the user finds a
design satisfactory. Elezkurtaj and Franck (2000) have demonstrated a very effective

 30

and usable system for optimising floor plans using a genetic algorithm and a
constrained topology of rooms. Impressively, their system allows changes in the
constraints while the optimisation is running, and presents the new results in real
time. More recently, a genetic algorithm has been employed for the optimisation of
whole building forms, starting with a user-provided schematic design and driven by
criteria relating to daylighting and energy use (Caldas, 2002). These efforts,
however, do not allow the generation of concept designs from scratch, thus
depending on unsupported human design for the initial, and potentially crucial,
design decisions. A detailed description of these efforts is therefore beyond the
scope of this literature review (but they are revisited in section 6.2 where they are
compared to the completed Shape Evolution prototype).

Frazer’s work is perhaps one of the earliest examples of the application of
evolutionary techniques to architectural design specifically (Frazer, 1995). His
projects involve geometric transformations and evolution of designs, revelling in the
unexpectedness of the resulting designs. The “Universal Interactor,” designed by
Frazer and his students at Unit 11 of the Architectural Association in London, used
three-dimensional cellular automata controlled by genetic algorithms. The
evolutionary process is guided by data collected using an array of exotic input
devices, including sound and light sensors, infra-red movement detectors, wind-
sensing piezo-electric “grass,” touch-sensitive body suits, and jewellery that can
pick up the movement of finger joints. All this measured data conspires to influence
the complex deformations of a spherical surface. This “datascape” is meant to
represent an ever-changing environment that creates the evolutionary pressure for
the genetic algorithm at the heart of the system. However, despite the use of a
genetic algorithm, the Universal Interactor performs what is in essence a random
search through a constrained problem space, given that the design is shaped by a
system of arbitrary interpretation of irrelevant information. The forms produced are
of course unanticipated and innovative, and valuable if only for that reason.
However, more semantic content is infused into the design by the loose-wire

 31

aesthetic of the data-collecting hardware than by the data itself. Although there is
nothing stopping this system from being applied to any design problem, the lack of
meaningful relationships between input and output would make the production of
useful concept designs unlikely.

The analogy of natural evolution is used again in the computer-aided design of
Makoto-Sei Watanabe’s subway station at Iidabashi in Tokyo (Watanabe, 2002),
claimed by its designer to be the first built project whose design was generated by a
computer programme. Watanabe develops a method termed “induction design” as
part of a larger project that aims to reveal and model the processes that create
similar patterns in complex systems of different scales, with a focus on urban
growth. The Iidabashi project concerns the design of a ceiling-suspended lattice of
steel tubing with integrated lighting, over an escalator connecting the underground
train platform to the surface. The design of the lattice starts as a random pattern of
overlapping line segments, representing tubular steel members, which is refined
through hard and soft regulation. Hard regulation concerns the range of allowable
angles between steel members, ensuring that the members are forming a lattice by
being connected at nodes at both ends, and constraining the three-dimensional
form of the lattice in the space available. Soft regulation allows the user to specify
areas that need to be clear of members, enabling the structure to bypass and
embrace existing structure, or areas that need to be denser in order to perform
better structurally. Initially implemented in Mathematica, the system uses a genetic
algorithm optimises the forms, with user feedback providing the evaluation of the
design population, and therefore “guiding” the design process (Tanaka and Kiriyama,
2000). The desire to produce unanticipated results is here made secondary to the
user/designer’s preference. However this method seems to be far from generic.
While its principles might be applicable to other design problems, it would be
necessary for a new programme to be written specifically for each particular
problem.

 32

Bentley first produced a generative system that can be applied generically to
different design problems and does not depend on a priori definitions of high-level
components (Bentley, 1996, Bentley, 1999). This system, called GADES (Genetic
Algorithm DESigner) employs a phenotype representation using clipped stretched
cubes as primitives for the approximation of any solid geometrical form. These
forms are “sculpted” by a genetic algorithm using a multi-objective ranking system
to select fit designs. Bentley tests his system by generating designs for tables, heat
sinks, penta-prisms, boat hulls, and aerodynamic cars, demonstrating its capability
to cope a wide spectrum of engineering design problems. In architectural design,
GADES has been employed for the evolution of hospital floor plans. However, the use
of an entirely generic phenotype representation, though sufficient for engineering
design, would fail to produce anything but functionalist architectural solutions. To
get around that using this system, one would need to figure out a way to encode
stylistic and aesthetic requirements as evaluation criteria. Beyond simple
requirements such as symmetry or adherence to proportional systems, this would be
a highly non-trivial task.

2.6 Combination of Generation and Evolution
Clearly, evolutionary systems, as exemplified by those using genetic algorithms at
their core, are very powerful and versatile. They enable the designer to consider any
number of criteria simultaneously without the need to define a priori solution
strategies. They provide the means for optimising designs through an extensive
examination of alternatives. However, if these tools are to infiltrate architectural
design studios they need to be generic. At the same time, they need to produce
designs that are meaningful to their designers and pertinent to each specific design
problem. The key to providing these features seems to lie with the choice of
representational system for the designs themselves, and also the structure of the
genotypes representing these designs when using a genetic algorithm (Woodbury,
1993). There have been a few recent examples of design tools combining generative

 33

systems, which provide the representation framework, and an evolutionary system,
which evaluates and modifies designs.

Chan, Frazer, and Tang (2002) attack this problem by using a hierarchical
representation combined with a genetic algorithm. Their system is based on a model
of design that describes it using hierarchical topologies. These hierarchies are
abstractions of design solutions. Indeed, they are abstract enough to allow them to
be application-independent. To demonstrate this system, the design of wine glasses
is considered. That example makes it apparent that, although there is a single,
generic hierarchical core to this system, further representations and mapping are
required to apply the system to a particular design problem. Genotypes and
phenotypes, and the process that maps them to each other, still need to be defined
at every hierarchical division point in this framework. It would seem logical, if the
generic representation is a hierarchy, for the hierarchy itself to be the genotype. But
despite the initial development of promising concepts, that is not the path taken in
this project.

Cagan and Mitchell (1993) introduced shape annealing, a method combining shape
grammars and simulated annealing, an evolutionary optimisation algorithm that uses
multi-objective evaluation of solutions. The very simple shape grammar defines a
language for the generation of truss-like structures composed of linear members.
Parameterisation allows the variation of structural member thickness depending on
load conditions. This was demonstrated for the design of unusual yet efficient
trusses, transmission towers, and domes (Shea and Cagan, 1997, Shea and Cagan,
1999a, Shea and Cagan, 1999b). This was further developed by Shea (2000) into
eifForm, a generative structural design system capable of generating free-form
structural systems for a wide range of situations and load conditions. EifForm,
though still under development, is showing the signs of a mature and stable system
that has been applied to provide innovative structural solutions for challenging
situations. Recently, eifForm benefited from being used for the design of a structure
that actually got built. As part of the Swarm Tectonics workshop, coordinated by Neil

 34

Leach at the Academie van Bouwkunst in Amsterdam, and in collaboration with
architects Spela Videcnik and Jeroen van Mechelen, a canopy was designed and built
by students to accommodate the end-of-year party in June 2002 (Shea, 2003). This
project demonstrated how the eifForm system was capable of accommodating a real
context and architects’ suggestions for modifications to the design. Though this
system is intended for the design of structures, this intention is actualised only
because of the shape grammar used and the evaluation criteria employed. Both are
easily changeable, and therefore little stands in the way of eifForm being turned into
a generic design system, given the availability of a shape grammar interpreter which
could be added to the system. Shape annealing works on a single design as opposed
to a population, as is the case with genetic algorithms. This has the benefit of
allowing a very direct manipulation of the design, but for that sacrifices the ability to
perform a broad, parallel search of the design space, thus potentially missing more
readily appealing or radically different candidate designs.

Rosenman and Gero (Rosenman, 1997b, Rosenman and Gero, 1999) have actually
used a design grammar to provide the representation for a genetic algorithm in a
system for the production of architectural floor plans. However, the prime interest in
this project is the development of a hierarchical framework for dividing design tasks
to discrete stages, thus allowing the use of simple genotypes. There seems to be
little concern for using the grammar in order to generate designs “in language.” This,
however, was of central importance in a working paper describing the SGGA (Shape
Grammar Genetic Algorithm) system (Loomis, personal communication, July 28
2003). Loomis suggests a very meaningful combination of a shape grammar and a
genetic algorithm that parallels the intentions of this thesis. Unfortunately, this
project was abandoned, never having gone further than a statement of intent.

By the time Loomis’s working paper appeared, work on Shape Evolution had gone far
enough to establish that this approach is more than promising. The combination of
shape grammars and genetic algorithms, if done in a way that allows both
components to offer their benefits in full, can fulfil all the requirements for a useful

 35

architectural design tool as outlined in section 1.5. However, as evidenced by the
review of relevant literature, this route has not yet been taken far enough to
demonstrate the potential power of such a system.

 36

3
Shape Evolution

Overview

3.1 Combination of a shape grammar and a genetic
algorithm
Genetic algorithms are robust search algorithms that can be used very effectively for
finding solutions that satisfy a set of quantifiable standards, such as the functional
requirements for an architectural project. Shape grammars are good at providing an
aesthetic and structural specification for the generation of forms. Combining the two
produces a system that allows the specification of a design space using a shape
grammar but also provides the means for navigating this space effectively by use of
a genetic algorithm. Furthermore, it has been observed that while specific
determinate algorithms might be faster at finding solutions to specific problems,
genetic algorithms will offer good solutions to a wider range of similar problems
(Fogel and Council, 1995). This makes the use of genetic algorithms ideal for use in
a design tool that purports to be generic.

This combination should be able to quickly produce a number of “appropriate”
solutions to a design problem. The designs are expected to be appropriate in two
ways. Firstly, their style is dictated by the shape grammar, which is specified by the
designer, and therefore the designs produced will fit in the designer’s corpus.
Secondly, the genetic algorithm selects the designs that best satisfy functional

 37

constraints (e.g. site boundaries and building regulations for an architectural design
problem).

To achieve this, and retain all the benefits afforded by shape grammars and genetic
algorithms, it is not sufficient to merely let the genetic algorithm get to work on a
shape grammar definition. The iterative nature of the evolutionary approach forces a
precise identification of how the parts of the system will interact and share
information. Clearly, the intention to use shape grammars means that the designs
produced by the tool should be valid in the language defined by that shape
grammar. If those designs are to be evolved using a genetic algorithm, the
operations on them must retain their shape grammar generated nature. In other
words, every design in every population during the evolutionary process must be a
valid design in the language.

A separate, sequential application of a genetic algorithm on a shape grammar, does
not guarantee the generation of designs that remain parts of a predetermined
language. If, for example, the genetic algorithm modifies designs by applying three-
dimensional scaling and shearing, the rule-based generation process that produced
the original design becomes irrelevant. In all probability the original shape grammar
will not be able to produce the modified design, which would therefore not qualify as
part of the designer’s specified design language. In short, it must be ensured that
every evolutionary cycle modifies designs without taking them outside the design
space defined by the shape grammar.

In fact, as genetic algorithms’ operations are affected on a genotype rather than the
designs themselves, it is up to the genotype to represent designs produced by the
sequential application of shape grammar rules. The most obvious way of achieving
this is by directly encoding this rule application sequence as the genotype.

 38

3.2 Shape Code
The generation process involves a chain of shape grammar rule applications starting
with an initial shape. The shape grammar is defined by a usually small number of
shapes in the vocabulary and a usually small number of rules. Consequently, it would
be easy to code the generation process for a design into a simple string. That string
would encode which initial shape was used, which rules were applied to which
subsequent shapes, and in what sequence. This string, called a shape code, has been
employed by Koutamanis (2000) for the purpose of cataloguing and retrieving
designs.

By way of explanation, take the example shape grammar shown in Figure 3.1. There
are three rules, R1, R2, and R3, defined using a label. The bottom row of images
shows the sequence of generation for a simple design. The shape code for the
resulting design is R1 R3 R2 R2 R3.

Figure 3.1: Example of simple design generated by a shape grammar

Note that in this case the rules remove the label from the original shape and place it
on the added shape. That way there is no ambiguity about which shape a rule is
applied to from reading the shape code alone. Grammars that do not use labels or
allow the application of rules on any recognisable shape in the design can be
accommodated by shape codes that are “deeper” than a simple string. For example,
in the shape code A (B C (A B) D (C D)) the rules in parentheses are applied to
the shape added by the rule immediately preceding them. Therefore, this shapecode

R1 R2 R3

R1 R3 R2 R2 R3

Initial shape
with label

 39

describes a sequence in which: rule A is applied to the initial shape; rules B, C, and D
are applied to the shape added by rule A in the previous step; rules A and B are
applied to the shape added by rule C in the previous step; rules C and D are applied
to the shape added by rule D two steps back. Since the generation of designs by use
of a shape grammar requires a known set of shapes and a known set of rules it is
possible to encode any shape grammar produced design into a data structure. This
data structure can be used as the genotype for a genetic algorithm.

Using the shape code directly as the genotype offers three very significant benefits.
Firstly, it ensures that the all designs during the evolutionary process are valid in the
language. It also means that the genetic algorithm’s operations on the genotype,
such as crossover and mutation, alter the selection and sequence of shape grammar
rules used for the generation of a design: potentially very meaningful alterations. In
addition, the process of embryogenesis is simply a process of parsing the sequence
contained in the shape code to produce geometry. Then the designs can be
evaluated with respect to their physical attributes.

3.2.1 Shape Code Ambiguity

It is important to note a key issue in the use of the shape code that limits its
usability. Every rule sequence, and therefore every shape code, generates a unique
design. However, there exist many possible shape codes that could describe a
specific design. Alternative shape codes for the same design might merely show a
different order for the same rules. More rarely, the same design might arise out of a
completely different rule sequence. This means that there is no one-to-one
correspondence between a shape code and the design it generates. In other words,
while it might be possible to parse a shape code to produce a design, the process
cannot be inverted: a shape code cannot be unambiguously deduced from the design
(Koutamanis, 2000).

As a result, it is possible that there will be cases in which the modifications that the
genetic algorithm operators carry out on the shape code might produce the same

 40

design. The extent of this ambiguity will vary widely between different shape
grammars, but for some design languages it is likely to affect the efficiency of the
genetic algorithm, by making it re-evaluate designs that have already been
considered.

This happens because the genetic algorithm’s stochastic exploration happens in fact
in a space of genotypes rather than the actual design space. Because of the lack of a
one-to-one correspondence between these two spaces, the genotype space is larger
and it therefore takes longer to search. This issue does not qualitatively affect the
capability of the genetic algorithm to search through the design space, but it means
that for certain shape grammars the search will take longer.

3.2.2 Invalid Shape Codes

Using the shape code as the genotype creates one further complication. Overlapping
abstract shapes is usually not a problem, but when these shapes represent physical
entities, as it happens when a shape grammar is used to generate architectural
designs, there are limitations. That is especially true in the cases of shape grammars
used to organise modular building blocks. In these cases there exist shape
grammars where not all possible rule sequences are valid, and where conditions
need to be met for rules to be applicable. However, the genetic algorithm’s crossover
and mutation operators can, over a number of generations, entirely change a shape
code. This means that when manipulating some shape grammars, the genetic
algorithm is likely to produce rule sequences that are invalid. Figure 3.2 shows one
such sequence, based on the example shape grammar defined in Figure 3.1. This
problem will in general not occur in shape grammars that work by subdividing
shapes, such as the Palladian floor plan grammar (Stiny and Mitchell, 1978).

 41

Figure 3.2: An invalid rule sequence

It is possible to minimise the significance of invalid shape codes, and their resultant
designs, by severely penalising them in the evaluation process. Invalid designs are
therefore evolutionarily disadvantaged and are less likely to be selected to contribute
genetic material for the next generation. However, this method does not ensure the
invalid codes are forced out of the genetic algorithm’s population. Furthermore, for
some shape grammars there will be a large number of invalid codes produced after
each generation, saturating the population with undesirable designs.

Clearly it is better if invalid shape codes are weeded out before they ever make it to
the evaluation algorithms. Provided that the initial population fed into the genetic
algorithm is comprised entirely of valid individuals, it is only at crossover and
mutation that invalid shape codes can be produced. Adding controls to these two
operators so that they are only applied in ways that guarantee valid results solves
this problem. This sort of peace of mind comes at a cost, namely a further decrease
in the genetic algorithm’s performance while searching for optimal solutions: more
computer processing power will need to be expended by the controlled evolutionary
operators. However, it is necessary to safeguard the integrity of the shape grammar
framework in order to get results that are controlled, and therefore remain
meaningful to the user of the system. The way the crossover and mutation controls
work is explained in detail in sections 4.7 and 4.8.

3.3 System Overview
Shape Evolution is a prototype system combining shape grammars and genetic
algorithms in the way described, implemented as a computer programme. It is meant
to receive input from the designer and output concept design solutions that satisfy a

R1 R1 R1 R3

 42

set of requirements and form part of the designer-created design language. Figure
3.3 shows a general flowchart of the system.

Figure 3.3: Shape Evolution flowchart

The programme starts by getting and parsing user input. That includes a definition
of the shape grammar to be used, as well as goal values for quantifiable properties
of the design. The genetic algorithm will be using those to assign a score to each
design according to how close to the goal values it is. Further user input includes
genetic algorithm variables such as population size, mutation rate, and the end
conditions. The latter determine when Shape Evolution will terminate its run and can

Start

Generate initial
population

Evaluate
population

Select
parents

Apply
crossover

Generate
offspring

Apply
mutation

Evaluate
population

End
conditions

met?

Yes

Stop

No

Output
results

Get user
input

 43

be satisfied either after a certain number of generations or when designs with scores
better than a user-defined threshold value are produced.

Shape Evolution then proceeds to generate the initial population using the shape
grammar. The initial population can be random, but needs to consist of designs that
are part of the design language. Every design in the population is then evaluated and
has a score value attached to it.

The fittest (i.e. highest-scoring) members of the population are then selected. These
designs will be providing the genetic material out of which the next generation will
be produced. The genotypes of the selected parents are paired up randomly and
crossover is employed to generate two new genotypes per mating. After being
mutated probabilistically, these genotypes form the new generation of designs.

A further evaluation and scoring of the new population helps determine if the end
conditions have been met. If not the selection-crossover-mutation cycle starts again
to turn out a new population. If the end conditions are satisfied the best designs
produced are presented to the designer and Shape Evolution stops.

What happens next is up to the designer. Some of the ultimate designs might be
usable as they are, others might serve as inspiration, and others may be entirely
useless. Provided the programme takes only a few seconds to satisfy the end
conditions and stop, the designer might begin tweak and run loops by altering the
input and observing the impact on the usefulness of produced designs. Experienced
users of Shape Evolution should be able to make educated guesses about the effect
of their input and thus control the system effectively.

3.4 The Apartment Block Problem
As a method, Shape Evolution is expected to be applicable generically on any design
problem. However, the development of a prototype to provide proof-of-concept for
this thesis would be better served by focusing on a particular example. For testing
purposes, the formulation of the problem needs to provide opportunities for widely

 44

variable requirements and resulting formal solutions, while at the same time
remaining as simple as possible. On the other hand, the problem should be not be
trivial enough to have obvious solutions.

A three-dimensional elaboration of the simple layout problem was formulated to
serve as the example design problem for the Shape Evolution prototype. The
problem seeks innovative and functional design concepts for a multi-storey
apartment block. For the sake of simplicity, the apartment block will consist only of
apartment units and the horizontal and vertical circulation spaces (i.e. corridors and
stairwells/lifts respectively) connecting them. A necessary requirement for all
designs is that all circulation is contiguous and that there is an accessible entrance
on the ground floor.

A simple shape grammar producing designs of this sort can be constructed with only
two shapes in its vocabulary: a multi-purpose circulation unit and the apartment unit
itself. The circulation unit can be approximated by a 4m × 4m × 4m cube, an

envelope that can easily accommodate vertical and horizontal circulation as seen in
Figure 3.4. The apartment unit is a generously sized single bedroom flat at 16m ×
4m × 4m. A possible internal layout for the flat is suggested in Figure 3.5. To allow

more flexibility in the arrangement of the apartments, we can accept that the large
window in the living room can be placed on any of the three walls. Also, the entrance
to the flat can be moved a few metres along the wall without any problems. Finally,
the entire plan of the apartment can be “handed,” i.e. reflected along its long axis,
allowing the entrance to be placed on the opposite wall. However, it is taken as given
that one end of the oblong apartment will house the living room. Simplified abstract
representations for these units will be used, as seen in Figure 3.6. The circulation
block will be symbolised by an open orange framework and the apartment by a grey
box, with a green end denoting the location of the living room.

 45

Figure 3.4: Example use of the circulation block

Figure 3.5: Possible internal layout for the apartment unit

 46

Figure 3.6: The two shapes in the apartment block shape grammar vocabulary

It seems reasonable to use a circulation block on the ground level, representing the
entrance to the building, as the initial shape. To eliminate the possibility of the
entrance being surrounded by built form and therefore rendered inaccessible, this
building will not have any ground floor flats. The entrance must therefore carry
visitors up one level in the first instance. Consequently, the initial shape for this
grammar should be changed to a stack of two circulation blocks.

Figure 3.7: The initial shape for the apartment block shape grammar

In order to build upon the initial shape, there need to be rules that add shapes to the
circulation block at the top of the initial stack. In fact, contiguous circulation and
accessibility for every apartment can be easily assured at the level of the shape
grammar definition by using a circulation block on the left hand side of every rule.
That way, circulation blocks are appended to by either an adjacent apartment
(ensuring access to that apartment) or an adjacent circulation block (ensuring
contiguous circulation). Using two possible ways of attaching an apartment to the
circulation route allows for extra variability in the resultant building forms. The
apartment can be attached to the circulation either at its living room end, as shown
in the first rule below, or four metres further away from that end, as shown in the

 47

second rule. A third rule can attach another circulation block to an already existing
one. In essence, the third rule creates a contiguous chain of circulation spaces, the
circulation core of the apartment building. The first two rules then attach apartments
to existing circulation. Figure 3.8 shows these three basic rules.

Figure 3.8 The three basic rules of the apartment block shape grammar

Most of the isometric transformations of these rules are applicable and appropriate,
but some are clearly not. For example, transformations of rules that place the
apartment units upright cannot be allowed. Explicitly defining only the usable
transformations of these rules produces a total of 22 rules, as seen in Figure 3.9.
Rules 1 to 8 are rotations and reflections of the first basic rule on the horizontal
plane. Similarly, rules 9 to 16 are rotations and reflections of the second basic rule.
Finally, rules 17 to 22 are extending existing circulation to all six possible directions.
Note that the simple abstract symbol used to denote the circulation block has several
symmetry properties that allow all possible transformations to be exhausted in six
variations. The actual configuration of circulation within this abstract cube might
vary, but this should not affect the definition of the shape grammar at this stage, as
the “fleshing out” of the abstract representations produced by Shape Evolution is left
as a task for the human designer.

 48

Figure 3.9: The 22 explicit rules of the apartment block shape grammar

Concept designs for apartment buildings can be produced by use of this shape
grammar by starting with the initial shape and then applying rules sequentially. An
example, showing the generation of a simple apartment building is shown below.
Each new stage in the sequence is the result of applying the rule designated above
each arrow on the last placed circulation block.

Figure 3.10: Example sequence of generation of concept design for an
apartment building using the shape grammar

6

2

10

14

18

5

1

9

13

17

21

7

3

11

15

19

8

4

12

16

20

22

13 9 21 5 1 21

13 9 21 5 1

 49

3.5 Evaluation Criteria
Concept designs produced using the shape grammar described above display
characteristics that can be described quantitatively and that can be used to define a
set of desirable characteristics for the optimisation of designs by Shape Evolution.
The extents of the resulting buildings are an obvious starting point: height and
footprint can be measured and constrained for. A count of the apartment units and
circulation units used for each design is also useful, as it can provide a measure of
layout efficiency as defined by the ratio of apartment floor area over total floor area.
The stacking of apartment units may create opportunities for balconies when it is
possible to step out from the living room end of an apartment onto the roof of built
form from the level below. Given that apartments with balconies will usually have a
higher value, a developer might wish to control the percentage of apartments with
balconies in a building. For reasons of value, but also for controlling the engagement
of the building with the context of the site, it might also be sensible to measure and
optimise for views out of the living room towards particular directions. This
measurement can also help avoid situations where an apartment’s views are
completely blocked by built form around it.

All these quantities can be measured from the produced designs, providing a record
of each design’s characteristics. Any combination of values for one, some, or all of
these quantities can be used to describe a desired set of characteristics for the ideal
apartment building. Each apartment block design can then be scored by comparing
its measured characteristics with the goal quantities.

 50

4
Shape Evolution

In Detail

4.1 Computer Implementation of the Shape Evolution
Prototype
The choice was made early on to code Shape Evolution in C++. This was done not
only because of the speed that the language affords, but also because of the
plethora of free, cross-platform programming tools and tutorials available on this
particular language. Cross-platform portability was deemed important in order to
keep the project’s requirements minimal and to facilitate the further development of
Shape Evolution beyond the requirements of this thesis.

Apple’s Mac OS X was chosen as the development platform for Shape Evolution
because of the excellent free development tools that are provided with it, combined
with the flexibility of its Unix command line. ProjectBuilder, Apple’s programming
environment, uses the cross-platform gcc3 compiler, enabling an easy migration to
different Unix platforms or to Microsoft Windows systems.

For development purposes, the output of Shape Evolution will be in files adhering to
open standards. Documents will be produced as text files or HTML/CSS files, and
three-dimensional geometry will be exported in the form of VRML files. Viewers for
these file formats exist in abundance for all platforms, so their use will not be
detrimental to Shape Evolution’s portability.

 51

As mentioned already, Shape Evolution is intended as a generic concept design tool.
That implies that the user/designer will have to feed a large amount of input into the
system in order to define all necessary variables. User input is required to define the
problem space, to specify goal characteristics for the produced designs, and to
provide the settings that control the running of the Shape Evolution process.

The main consideration for the prototype developed for this thesis is to show that
Shape Evolution as a method yields useful results. For that reason, and to forego the
difficulties inherent in providing a user-friendly interface for data entry, much of the
designer input has been hard-coded into the source code for the prototype. More
specifically, since the prototype will focus on finding solutions for the example
problem described in section 3.4, all the information required to define the problem
space (i.e. the shape grammar and appropriate representation frameworks) has been
fixed into the code in advance. The same is true for the evaluation algorithms
pertaining to the architectural typology generated by the prototype.

Furthermore, it was decided that designing and implementing a full-featured,
generic shape grammar parser for Shape Evolution merited a long-term research
project on its own and was beyond the scope of the current undertaking. Instead, a
generative system specifically designed for the problem at hand was conceived, with
capabilities limited to those required by the apartment block shape grammar.
Emergence, for example, will not be accommodated by this generative system, as the
shape grammar at hand does not allow for it.

It should be noted here that while the term “grammar” refers specifically to
generative systems that do exhibit emergence, the apartment block shape grammar
is a rule-based generator chosen for its simplicity that can comfortably be
accommodated by the shape grammar formalism. Indeed, given a full-featured,
generic parser, Shape Evolution would be capable of dealing with any shape
grammar, no matter how complex.

 52

As mentioned in section 2.3, several variations of the basic genetic algorithm have
been developed. Each of these has been shown to provide better solutions to a
particular genre of problems. It was decided early on that, as improvements in the
performance of the genetic algorithm are secondary to an investigation of the
fundamentals of its combination with a shape grammar for the purposes of this
thesis, the prototype should use a bare-bones genetic algorithm architecture that
can subsequently be elaborated as needed. Furthermore, the decision to opt for the
simplest genetic algorithm to implement was supported by Davis’s observation that
genetic algorithms are very forgiving, as even poor implementations can yield
acceptable results (Davis, 1991).

4.2 Representation of the Phenotype
Before the apartment block shape grammar can be encoded into a form that can be
manipulated by software there needs to be a framework for representing the shapes
and their relative positions. In its abstract form, the apartment block shape grammar
is based on a 4m × 4m × 4m cubic module. This makes it easier to avoid

programming a shape grammar parser or interpreter or a generic system for the
description of three-dimensional form. Instead, the prototype can rely on a simple
three-dimensional array that can be populated with numbers representing different
kinds of cubic modules. Starting sensibly by representing a void by a zero, a
circulation block can take the value 1 in the array, and the four cubes that make up
an apartment can take the values 2, 3, 4, and 5, starting at the living room end.

Figure 4.1: The numerical values assigned to each cubic module in the
apartment block shape grammar

1
2 3 4 5

0

 53

As an illustration of the concept of the three-dimensional array consider the design
below, displayed with its array, shown as three two-dimensional sets of numbers.

Level 1:
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

Level 2:
2 3 4 5 0
0 1 0 0 0
2 3 4 5 0

Level 3:
0 2 3 4 5
0 1 0 0 0
0 2 3 4 5

Figure 4.2: An example apartment block design expressed as an array of values

Using this three-dimensional array encoding the rules is fairly straightforward. Rules
can be defined by changes of the array values in specific positions relative to the
position of the circulation block. So, if the directions of i, j, k are as shown in Figure
4.3 and the unit length in this Cartesian system is equal to the 4m module, then rule
1 can be described like so:

For each array position with value 1 and coordinates (i, j, k),
change the value at position (i, j-1, k) to 2, the value at
position (i+1, j-1, k) to 3, the value at position (i+2, j-1, k) to
4, and the value at position (i+3, j-1, k) to 5.

Figure 4.3: The first rule of the apartment block shape grammar with a guide
showing the direction of the vectors in a Cartesian system

i j

k

 54

In this way, all 22 explicit rules used in the shape grammar for the prototype can be
defined as operations on the three-dimensional array. Although it is trivial to make
the size of the containing array (i.e. the three-dimensional extents of the space in
which the resulting building is required to fit) user-configurable, for the purposes of
the prototype this has been fixed to a cube with an edge length equal to 16
modules, i.e. 64m × 64m × 64m. This provides ample space for experimentation with

apartment blocks of different sizes and footprint ratios.

For the purposes of presenting a design to the user in an intelligible format, Shape
Evolution can convert the three-dimensional array to a Virtual Reality Mark-up
Language (VRML) file. The conversion to VRML happens by reading the values in the
three-dimensional array and appending a cubic module of the appropriate type in
the right coordinates. This process builds a three-dimensional geometric model that
represents the design by use of the abstract forms of the circulation block and
apartment shapes. A VRML viewer can display this geometric model on the computer
screen as seen from several preset viewpoints. The viewer software also allows the
user to freely rotate the model or carry out a virtual walk-through in real time. VRML
is a standard file format that can be imported into three-dimensional CAD or
analysis software and incorporated in the designer’s digital workflow, including the
production of physical models using rapid prototyping equipment.

 55

Figure 4.4: The VRML model of a random apartment block design as viewed in a
VRML browser

Each three dimensional array is paired with a shape code that describes the rule-
based generation of the design. It must be noted, however, that because of the
shape code ambiguity issue mentioned in section 3.2.1 above, while the three-
dimensional array can be derived from the shape code, the array is not sufficient to
produce the shape code. For this reason, it must be ensured that the shape codes for
all designs in the current generation are kept in memory throughout the Shape
Evolution process.

 56

4.3 Generation of the Initial Population
The genetic algorithm provides a mechanism to search the problem space that
requires a starting point: a random initial population must be provided in the first
instance. Despite the fact that it is random, the initial population needs to be
comprised of designs valid in the apartment block language. In order to generate
these designs, a specific, user-defined number of random rules is selected and
applied. (In the interest of simplicity, the genetic algorithm implementation in the
prototype cannot deal with populations containing genotypes of variable length. All
shape codes must therefore include the same number of rules.) However, as
mentioned in section 3.2.2 above, for certain shape grammars there exist rule
sequences that are invalid. Such is the case with the apartment block shape
grammar. A simple example of an invalid sequence in this grammar would be the
application of rule 1 twice in sequence, as that would attempt to insert an apartment
in exactly the same position twice, which would require overlapping shapes. The
initial population generator must therefore be more discerning about how the
“random” rule sequences are produced.

Instead of trying to resolve this issue by a knowledge-based system that defines
which rules are applicable at a particular point in the sequence, the generator uses
the three-dimensional information provided by the array representation to determine
whether a rule application would create an invalid design. Notice that the simple rule
application algorithm mentioned in the previous section disregards the original state
of the changed values in the array. Adding a checking step ensures that all the array
positions to be changed had originally a value of 0, i.e. that segment of space was
void. The corrected algorithm for the application of rule 1 therefore becomes:

For each array position with value 1 and coordinates (i, j, k), if
the value at position (i, j-1, k) is zero and the value at
position (i+1, j-1, k) is zero and the value at position (i+2, j-
1, k) is zero and the value at position (i+3, j-1, k) is zero,

 57

then change the value at position (i, j-1, k) to 2, the value at
position (i+1, j-1, k) to 3, the value at position (i+2, j-1, k) to
4, and the value at position (i+3, j-1, k) to 5.

This ensures that the rule is not applied if it would require the overlap of shapes but
it does not explain what should happen if this rule is not applicable. If this rule is not
applicable, clearly a different rule should be tried. If the second rule to be tried is
also selected randomly it is possible that a non-applicable rule might be attempted
for the same position more than once. To eliminate this, a randomly shuffled stack
of all 22 rules is created for each position. The rules then are attempted in sequence:
if the first rule on the stack is not applicable the next rule is attempted. When the
stack has been exhausted and no rule has been applied it means that no shape can
be added to the last circulation unit. Since the last six rules of the apartment block
grammar attach further circulation units in each possible direction, the stack may be
exhausted only when the latest circulation unit is entirely surrounded by form in all
six directions, a rather rare situation. Despite its rarity, this is an occurrence which
must be detected, as if this happens before the required number of rules is applied,
the design will have a shorter genotype, an anomaly which is not accommodated by
the genetic algorithm at the heart of the Shape Evolution prototype. Therefore, the
exhaustion of the rule stack triggers the rejection of the current design. The
generator then starts from scratch until the initial population is filled with the
required number of valid designs.

The corrected rule application algorithm shown above also disallows the application
of a rule when the array positions it affects lie outside the preset limits. This ensures
that the design is kept within the 64m × 64m × 64m envelope. It also ensures that no

shapes are placed on the ground level apart from the entrance, i.e. the lowest of the
circulation units in the initial shape.

As each rule is applied, the changes to the design’s array representation are made,
and the number of the rule that was applied is recorded in a one-dimensional array.

 58

When the required number of rules is applied this one-dimensional array is the
shape code for the current design. In other words, during the initial population
generation stage three-dimensional arrays and the shape codes are generated in
parallel for every design and kept in memory.

4.4 Evaluation Algorithms
The next step in the process is to evaluate the performance of designs in the initial
population by comparing them to the user-provided optimisation goals. The
evaluation routine is also called at every iteration of the genetic algorithm loop, as
shown in Figure 3.3. In terms of programming the evaluation algorithms the task can
be reduced to teasing information about a design’s physical attributes from the
already known data about the design: the three-dimensional array and the shape
code.

4.4.1 Apartment Count, Area, and Volume

The shape code alone can provide a large amount of information. It is known that
rules 1 to 16 are rules that add an apartment, whereas rules 17 to 22 add a further
circulation unit. Counting the number of times a rule in the range 1 to 16 appears in
the shape code gives the number of apartments in the design. Given that the initial
shape is comprised of two circulation units stacked on top of each other, the number
of circulation blocks in the design will be equal to the number of instances of rules
17 to 22 present in the shape code increased by two. For example, take the shape
code for the design shown in Figure 4.4:

19 2 13 21 16 7 20 21 2 11 17 1 4 21 1 21 14 5 8 18 21 5 1 17 21 8 13 7 19 6 21 10

In this 32-rule shape code there are 19 rules that add an apartment and 13 rules
that add a circulation unit. Therefore this design features 19 apartments and 15
circulation units, including the two in the initial shape.

This is fairly basic information on its own, but it can reveal plenty about the design
to which it pertains. For example, given rough costs per apartment and circulation

 59

unit, a value for the cost of the entire building can be approximated. More simply,
the floor area of the building can be calculated by multiplying the number of
circulation units by 4m × 4m, and adding the number of apartments multiplied by
4m × 16m. For the example shape code used above, this gives a total floor area of
(15 × 4m × 4m) + (19 × 4m × 16m) = 1456m2. This number can be multiplied further

by 4m to give the volume of the building in cubic metres.

More usefully, the ratio of the apartment area over the total area can give a rough
indication of the circulation efficiency of the building. In the prototype, the
evaluation algorithm produces a value for the percentage of apartment units placed
out of the total number of modules placed (this latter value can of course be derived
by taking the length of the genotype and adding 2. for the two circulation blocks
used in the initial shape). Note that while a single circulation block can take a
maximum of four apartments around it, a schema which would give a maximum
value of 80% apartment units placed, in actual designs that value can only approach
80% asymptotically, as the circulation block used as the building’s entrance cannot
have any apartments attached to it.

4.4.2 Building Height and Footprint

The shape code can also be used to derive the height of the building. All apartment
additions, using rules 1 to 16, happen on the same level as the last placed
circulation unit. The same is true for circulation unit additions using rules 17 to 20.
Indeed, the only rule that might change the height of the building is rule 21; rule 22
moves to an existing level below. The initial shape alone takes the height of the
building to 8m. Starting with that value, and adding 4m every time rule 21 is
encountered while subtracting 4m every time rule 22 is used gives the height of the
last circulation unit added. However, the maximum value reached in this process is
the overall height of the building.

The height can also be derived from the three-dimensional array by simply starting
to search the array from the top down for the first non-zero value. Adding 1 to the

 60

k-coordinate of that position and then multiplying by 4m gives the height of the
building. The same method can be used to find the extrema of the building in other
directions. This information can be used to provide the rectangular footprint of the
building, an important piece of data when trying to fit a design on a site.

4.4.3 Views

One way of taking into account the site conditions is by recognising which direction
offers the more desirable views. Conversely, a particular direction might face into the
blank wall of an existing building or some otherwise unsightly view. For this building
the views originate from the living room end of each apartment. It is assumed that
the layout of the apartment can be easily adjusted so that the large living room
window can be placed on any of the three walls. The view evaluation algorithm starts
at each apartment’s living room and checks the values of all positions in a straight
line from there to the extents of the three-dimensional array along the four
horizontal directions. It is taken that an apartment affords views in a particular
direction when there is nothing built between the living room and the array boundary
at that direction, i.e. the values of all positions from the living room to the boundary
are zero. This algorithm returns the number of flats that have unobstructed views in
a particular direction, taking into account that a particular flat may allow views in two
or three directions. It also returns the number of flats that have no unobstructed
views to the site boundaries, meaning that parts of the building are surrounding
those apartments’ living rooms in all directions.

4.4.4 Balconies

The stacking of apartments on top each other creates opportunities for using the
roofs of built structure below as balconies, to be accessed through the glazed wall of
the living room. The evaluation algorithm checks for balconies by looking for voids
in the four positions adjacent to the living room, and then checking for a non-zero
value (non-void, or built form) directly below. The algorithm simply returns the
number of apartments that provide opportunities at least for one 4m × 4m balcony.

 61

4.5 Scoring
Having drawn a set of quantifiable information pertaining to each design in the
population, the next step is to rank the designs according to how well they meet the
user-defined goals. For the prototype Unix console application, the optimisation
goals are input as a sequence of numbers in a text file. It is trivial however to create
a script that provides a graphical front end for the user to select the desirable
characteristics of the apartment blocks, subsequently translating this information to
a text file that will be read by the prototype Shape Evolution application. A graphical
front end of that sort, seen below, was created using AppleScript on Mac OS X.

Figure 4.5: The graphical user interface developed for inputting the
optimisation goals

This screenshot illustrates the way the user input is structured: for each evaluated
quantity or fitness criterion the user inputs a goal value from a range appropriate to
that quantity and a weighting in the range [-1, 1]. The weighting determines how

 62

much influence this particular criterion should have on a design’s score. Negative
values for the weighting result in a higher score for designs that have a measured
quantity the furthest away from the “goal” quantity; in other words using a negative
value for the weighting allow for the specification of undesirable characteristics in
the optimised designs.

The score component for a particular criterion is calculated by firstly normalising the
measured value of that quantity and the goal to the range [0, 1]. The distance of
these two values (i.e. the absolute difference) is then multiplied by the weighting.
This gives a normalised and weighted measure of the distance between the
measured value and the goal value for each quantity. The total score for each design
is found by subtracting the sum of the scoring components for all criteria from the
maximum possible score (the sum of all positive weightings). Higher scores denote
more desirable designs.

The score Sn for an individual design n is given by the formula below, where Smax is
the sum of all positive weights, iterations is the length of the genotype, variables
with the index “goal” are the goal values for quantities revealed by the variable
names expressed in percentile points or metres as appropriate, variables with the
index “n” are the counts of the features revealed by the variable names in individual
design n, variables with the index “weight” are the weights for each criterion, and
imin, imax, jmin, jmax, and kmax are minimum and maximum extents of the design n in
the directions i, j, and k. The function round(x) returns the integer nearest to x.

 63

€

Sn = Smax −

round
apartmentsgoal

100
iterations




 




  − apartmentsn

0.8iterations 
apartmentsweight +

round
balconiesgoal

100
apartmentsn




 




  − balconiesn

apartmentsn
balconiesweight +

heightgoal

4
− kmax +1()
14

heightweight +

footprintigoal

4
− imax − imin +1()
15

footprintiweight +

footprintjgoal

4
− jmax − jmin +1()
15

footprintjweight +

round
viewsiplusgoal

100
apartmentsn




 




  − viewsiplusn

apartmentsn
viewsiplusweight +

round
viewsiminusgoal

100
apartmentsn




 




  − viewsiminusn

apartmentsn
viewsiminusweight +

round
viewsjplusgoal

100
apartmentsn




 




  − viewsjplusn

apartmentsn
viewsjplusweight +

round
viewsjminusgoal

100
apartmentsn




 




  − viewsjminusn

apartmentsn
viewsjminusweight +

round
noviewsgoal

100
apartmentsn




 




  − noviewsn

apartmentsn
noviewsweight









































































































It should be noted that this linear addition of score components results in scores
that do not fully represent the value of each criterion. A design that satisfies one
criterion fully but performs unacceptably poorly with respect to another criterion

 64

might get the same score as other designs with a good balance between criteria. The
incorporation of weighting factors for each criterion is meant to compensate for this
and give the user the ability to specify priorities. Still, even after normalisation and
weighting, the added score components are qualitatively different. The same
increase in one component is likely is to have a different impact in another
component. Pareto optimisation is a much more effective way to retain the integrity
of each criterion in a multi-objective search. This is discussed further in section
5.3.2.

4.6 Selection
The next phase in the genetic algorithm is to select, from the evaluated and scored
population, the “parents,” i.e. the designs that will contribute genetic material to the
next generation. There exist several selection schemes that can be used in genetic
algorithms, each applying the probability of selection to its individual with varying
degrees of “fairness” or bias (Prügel-Bennett, 2000).

Shape Evolution implements a simple binary tournament selection scheme, chosen
for its conceptual simplicity and its capacity for giving a chance to certain low-
scoring individuals to be represented in the next population. Two individual designs
are picked at random from the population, their scores are compared and the one
with the higher score is put in an intermediate population of the same size as the
normal population. The process is repeated until the intermediate population is full.
Notice that the opponents of each comparison do not become exempt from further
fighting. This results in an intermediate population with more copies of the higher
scoring designs and fewer or no copies of low scoring designs, thus giving higher
reproductive capacity to the fittest individuals.

4.7 Crossover
In Shape Evolution the genotype is a simple string, the shape code. This allows the
use of a simple single-point crossover: two parental genotypes are bisected at a
random position, and the halves are swapped and rejoined to create the genotypes

 65

for the offspring. Since the tournament selection algorithm already results in a well-
shuffled intermediate population, the parental genotypes can just be paired
sequentially: the first individual is paired with the second, the third with the fourth,
and so on. To avoid unnecessary complications in this step the size of the population
is limited to even numbers. (Having set that limitation, if there were a need for odd
population sizes, it would suffice to simply copy the last remaining individual over to
the new population without crossover.)

With a shape grammar in which all rule sequences are valid a crossover mechanism
as already described would be sufficient. However, the apartment block shape
grammar presents the problem of invalid shape codes. As mentioned in section
3.2.2, the crossover process generates new, potentially invalid shape codes. To
address this issue, some extra elaboration of the crossover algorithm is called for.

After each crossover, the two new offspring designs are therefore checked by being
ran through an embryogenesis algorithm that converts the genotypes to three-
dimensional arrays containing information about the spatial configuration of the
design. Much like the process that generated the initial population, the
embryogenesis process checks if an attempted rule application would result in
overlapping shapes. At the first instance of that happening it returns an error
message. The crossover algorithm then attempts crossover at a new point. To avoid
multiple attempts at the same, pathological crossover point, the crossover points are
chosen from a shuffled stack of all possible points. If the crossover point stack is
exhausted it means that the two parents undergoing crossover cannot produce valid
offspring under a single-point crossover. However, this does not mean that they will
not be able to produce offspring when paired with other individuals. “Failed” parents
can therefore just be copied over to the next population as they are.

4.8 Mutation
The crossover process fills the new population with new valid individuals that are
composed of genetic material provided by the parents, the individuals of the

 66

previous generation. To introduce diversity into the new population and allow the
exploration of new areas of the problem space mutation is applied probabilistically.
Every bit of every genotype in the population is mutated according to a user-defined
mutation rate. Mutation actually involves changing the value of a particular bit to a
random rule number from 1 to 22.

Once again, this is an operation that changes a genotype to a potentially invalid one,
so every time a gene is mutated the validity of the resulting genotype is checked by
calling the embryogenesis process. If that process returns an error, i.e. the mutated
genotype produces an invalid design, the mutation of the particular bit is simply
cancelled.

This introduces a discrepancy between the number of bits that were actually mutated
and the user-defined mutation rate. Indeed, the user-defined value actually reflects
the number of attempted mutations. To allow for a more informed adjustment of
that value during modify-and-test loops, the actual mutation rate is recorded at this
point and presented to the user at the end of the run of the programme.

4.9 Embryogenesis
As mentioned previously, the embryogenesis process converts the shape codes to
the three-dimensional array representation in order to enable the evaluation of
designs. Embryogenesis is very similar to the initial population generator. The crucial
difference is that it does not produce random genotypes from scratch; it reads the
genotypes of the current generation and produces the corresponding three-
dimensional array, which is then stored.

Furthermore, as mentioned above, embryogenesis ensures that no malformed
individuals are entered into the next generation by checking for validity after the
application of each rule. This step may affect the speed of Shape Evolution but
ensures usable results.

 67

4.10 Shape Evolution Output
Once the first new generation has been evaluated, its designs are scored, new
“parents” are selected, crossover and mutation are applied, and another new
generation of designs is produced. This is repeated for either a user-defined number
of generations (the end condition used in the prototype), or until a generation is
produced with individuals whose score surpasses a user-defined threshold value.
The results of the Shape Evolution run are then presented to the user.

For the purposes of analysis, the prototype outputs an HTML document that collects
and displays a significant of information about the last Shape Evolution run. Part of
this information is the user-inputted variables: target values and weights for all
criteria are presented, as well the population size, the number of generations, and
the length of the genotype, i.e. the number of shape grammar rules used in each
design. The user-defined value for the mutation rate is displayed alongside the
actual mutation rate over all generations. The maximum score (a function of the
optimisation weights) is also shown.

The prototype code keeps a record of the average and highest scores for every
generation. This data is presented on the HTML file as a graph of both these values
on the vertical axis over the generations on the horizontal axis. This makes evident
the rate of progress of Shape Evolution towards better solutions, permitting a more
informed adjustment of parameters if better results are required.

The prototype also records data pertaining to any number of “champion” designs.
These are the highest scoring individual designs produced throughout the whole
process. The champions’ scores as well as the number of the generation in which
they appeared are presented on the HTML file, together with a detailed report of
their evaluated characteristics. Furthermore, VRML files of the champion designs are
generated and linked to from the HTML report. Shape Evolution does not produce
ultimate, fully optimised solutions, so it would be deceptive to offer a single design
at this end of its run. The purpose of the programme is to inspire the designer by

 68

suggesting good solutions. Offering a number of alternatives does that, and also
allows the designer a choice that can be influenced by criteria that were not dealt
with by the Shape Evolution process.

Figure 4.6: The beginning of an example HTML report output by the Shape
Evolution prototype viewed in a web browser

 69

5
Experiments
and Analysis

5.1 Example Design Intentions
To test the Shape Evolution prototype plausible design situations were devised using
a selection of the developed evaluation parameters. Four sets of optimisation goals
were used, covering an array of criteria. All four share the common requirement for
minimisation of the number of apartments with blocked views in all directions. This
is expressed by setting the goal amount of apartments with no views to zero, and
the weight of this criterion to 1, the maximum setting. The four sets of design
intentions concerned the design of tower blocks, low-rise blocks, buildings
maximising opportunities for views and balconies, and buildings satisfying a
combination of several criteria.

For each of these design intentions, Shape Evolution was run fifteen times, using a
range of different settings for population size and the set mutation rate. Specifically,
values of 50, 200, and 500 were used for the population size, and values of 0.005,
0.01, 0.05, 0.1, and 0.5 were used for the set mutation rate. Shape Evolution was
allowed to run for 500 generations for the tower, low-rise, and views and balconies
problems. 1000 generations were evolved for the multiple criteria problem.

 70

Tower block: The intention is to generate tall and thin buildings. This is encoded by
setting the goal value for the building’s height to the maximum value, 64 metres.
Both dimensions for the footprint are set to 24 metres, equivalent to six cubic
modules. The weights for the height and the two footprint criteria are set to 1. The
genotype length is set to 48, meaning that 48 shape rules will be applied to the
initial shape. The maximum score for designs under these conditions is 4.

Low-rise block: This time the requirement is to generate lower buildings. The goal
height is set to 16 metres, equivalent to four storeys. The footprint of the building is
left unconstrained. Instead, to avoid unnecessary spreading of the building
horizontally, the goal relating to the percentage of apartment modules in the design
was set to the maximum value, 80%. The effect of this is that designs with a more
efficient use of circulation will be preferred. The genotype length is 24. The weights
for height and percentage of apartments are set to 1, making the highest possible
score less than 3 (since the maximum value for the percentage of apartments can
only be approached asymptotically, as explained in section 4.4.1).

Views and balconies: The building is imagined in a setting with beautiful views in
one particular direction. The intention is to exploit the views maximally. This goal is
represented by requiring 100% of apartments to afford views towards the positive i
direction. To further maximise enjoyment of the views, it is required that 100% of
apartments have balconies. Weights for the views and balcony criteria are set to 1.
The genotype length is set to 32. The maximum score for this set of criteria is 3.

Multiple criteria: The final set of intentions is used to test Shape Evolution in
situations were many criteria are called into effect simultaneously. In this case,
design goals from the previous test cases are combined. The building should be as
high as possible, the percentage of apartments should be as high as possible, and as
many apartments as possible should have balconies. The goal values for these three
criteria are therefore set to their maximum values, at 64 metres, 80%, and 100%
respectively. The goal value for apartments with views in the positive i direction is

 71

set to 80% (allowing, perhaps, the 20% of apartments that don’t have views in that
direction to be sold or rented at a lower price). The weights for the criteria
mentioned so far have been set to 1. A less important goal is to give the building an
oblong footprint, measuring 24 × 64 metres in the i and j directions respectively. The

weights for these two criteria have been set to 0.6. This set of criteria seems likely to
be satisfied by large buildings; accordingly, the genotype length for this case is set
to 64. Given that some of the criteria might be conflicting, and given the
impossibility of attaining the apartment percentage criterion, the best scores for this
set should be lower than 6.2.

5.2 Results
The results produced by the Shape Evolution prototype for the test cases are
collected in appendices A, B, C, and D. This section will discuss the results in general
as well as select particular instructive results to focus on.

One of the most telling indicators of the performance of a genetic algorithm is the
rate by which the quality of the population improves. This can be visualised by
plotting the average score in a population versus generations. Typically, a fast
increase in fitness is observed in the first few generations, followed by decelerating
progress as the algorithm focuses on a narrow part of the search space. The
expected curve can be seen in Figure 5.1 (Parmee and Denham, 1994).

 72

Figure 5.1: Typical curve of score plotted versus generations in genetic
algorithm results

In general, the Shape Evolution prototype produced mixed results. While none of the
test runs produced dramatically positive results, there were results where the
average fitness increased over time in a way similar to the typical curve shown
above. There were also cases in which the average fitness clearly decreased after a
few generations. Since the choice of optimisation criteria greatly affected the
capacity of the genetic algorithm to produce consistently improved results, the four
different test cases will be examined individually.

5.2.1 Tower Block

The results for the tower block design scenario are presented in appendix A. The
requirements for this scenario are fairly simple, asking essentially for a tall, thin
building. The footprint and height criteria are not conflicting, and the small footprint
is also making it easier for the criterion minimising the number of apartments with
no views to be satisfied. As a result, several of the test runs in this scenario
produced designs that attained the maximum score value of 4. Some of the
maximally scoring designs are shown in Figure 5.2.

 73

Figure 5.2: Tower designs with maximum score

These building concepts certainly satisfy all the functional design intentions as they
were encoded for Shape Evolution. Furthermore, they present novel solutions within
the shape grammar defined for this class of designs. In that respect, the tool has
been entirely successful: the designer has used a shape grammar and a set of design
criteria as input for the programme, and the programme output a range of possible
compliant and stimulating designs. Of course, for the purposes of experimentation
with the Shape Evolution prototype, aspects of building functionality have not been
considered (such as structural concerns, or the vertical continuity of elevator shafts
that might be used as part of circulation). Still, the requirements that were encoded
have been resolved successfully.

Furthermore, the results of this test case display another positive trait: diversity. In
most of the runs, the “champion” designs, i.e. the highest-scoring designs of all
generations, are very different. This is of course important for Shape Evolution as a
tool because its purpose is to open up different routes for the designer to evaluate
and be inspired from. This diversity is a result of the conscious strategy to ultimately
display as results fit individual designs from all generations, and not just the last
one. As seen in the run using a population of 500 and a set mutation rate of 0.05,

 74

the top individuals in adjacent generations might be very similar, stemming from
minor mutations of the same ancestral design. The “all-time-champion” system
minimises the effect of this phenomenon by also retaining strong designs from the
“distant past” with schemata that somehow got extinct in the process.

Figure 5.3: The top three tower designs from generations 459, 462, and 461 of
the same run, using a population of 500 and a set mutation rate of 0.05, and

displaying significant similarities

This kind of output can inspire ideas for further constraining the search of the
design space. For example, in order to achieve the height requirement, several of the
best tower solutions had floors entirely composed of circulation, which, in most
cases, would be undesirable. This undesirability can easily be encoded as an
evaluation criterion. Redundant vertical circulation can be detected simply by looking
in the genotype for substrings beginning and ending with the allele 21 (the rule that
adds a circulation block above the current one) and not containing any of the alleles
1 to 17 (corresponding to rules that attach apartments to circulation blocks).
Genotypes that contain such strings can then be penalised during scoring.

The general image of the graphs of average and maximum score versus generations
for the tower scenario may be some distance away from the ideal curve shown in
Figure 5.1. However, they are still showing a positive increase in average scores over
time. There is some fluctuation, especially in the test runs that used the smaller
populations. Due to the smaller sample afforded by these small populations,
individual designs with extremely high or extremely low scores have a more
pronounced effect on the average score. It is therefore expected that the graphs for
test runs with larger populations would produce smoother curves.

 75

Figure 5.4: The results for the tower problem over 500 generations, with a
population of 500, and a set mutation rate of 0.01

Three characteristic curve shapes are observed in the results. The first (Figure 5.4)
shows a gradual but steady improvement and is exemplified by the test run using a
population size of 500 and a set mutation rate of 0.01. These settings produced
designs with the maximum score quite late, with the first ones occurring in
generation 370. The increase in average score is also pushing up the maximum
score curve. This slow increase in scores is welcome, but it does not entirely meet
the efficiency expectations of an optimised genetic algorithm.

 76

Figure 5.5: The results for the tower problem over 500 generations, with a
population of 200, and a set mutation rate of 0.1

Figure 5.6: The results for the tower problem over 500 generations, with a
population of 200, and a set mutation rate of 0.5

The second typical curve shape, observed in the four runs that used populations of
200 and 500 and set mutation rates of 0.1 and 0.5, are much more like the expected

 77

results from a genetic algorithm, and within the first hundred generations
approximates the typical curve shown in Figure 5.1. Interestingly, in Figure 5.5 the
maximum score remains more or less flat during the dramatic increase in average
score in the first few generations, signifying that the algorithm is very effective at
weeding out low scoring individuals from the population, but is perhaps less capable
at exploiting the genetic material of the top individuals in order to provide better
designs. However, this interpretation is negated by the results shown in Figure 5.6,
where the highest scoring individual of the original, random generation has a score
of only 3.5905 approximately. In this case, the initial remarkable increase in average
scores is paralleled by a similar increase in maximum scores. The maximum scores
then fluctuate around the value 3.8667 approximately. This fluctuation, as well as
the dip in the average score curve seen after generation 300 in Figure 5.5, is the
result of the exploration of the solution space performed by the algorithm in search
of potentially higher scores: the effect of the failed attempt to find better-
performing designs in a different locus.

Figure 5.7: The results for the tower problem over 500 generations, with a
population of 200, and a set mutation rate of 0.005

 78

The third typical curve shape observed in the tower problem results involves
precipitous drops in the maximum scores, as seen in Figure 5.7 for the run with a
population of 200 and a set mutation rate of 0.005. In this case, the maximum
overall score was 3.8, observed in generation 35. Two dramatic drops subsequently
brought the maximum score down to values around 3. These extreme drops in the
maximum scores do highlight a difficulty in exploiting some high scoring designs.
The loss of the best performers in those cases can be caused when a genetic
operator, mutation or crossover, produce designs with significantly lower scores. In
terms of the solution space, this implies the existence of highly fit and highly unfit
designs positioned in neighbouring locations, i.e. that share highly similar schemata
in their genotypes. This can be understood intuitively by considering the effect of
mutating allele 21 (that moves up one level) to allele 22 (that moves down one level).
If that change produces a valid individual, it is likely to produce one with much
reduced height, and in the case of the tower scenario, an appreciably lower score.

5.2.2 Low-Rise Block

The low-rise block problem is defined by using competing goals: the building is
required to be only four storeys high, yet at the same time 24 rules must be applied,
and with the maximum possible amount of apartments. To keep the height of the
building down to four storeys, circulation must be placed in order to extend the
building horizontally, thus limiting the possible number of apartments. The highest
scoring designs produced within this brief featured 17 apartment units and 9
circulation units, giving a value of 65.38% for the percentage of apartment units
versus all units placed (in order to maximise the number of flats, the goal value for
the percentage of apartment units is set to 80%). To achieve this value, the highest
scoring designs sacrifice compliance with the height constraint, adding two more
storeys to the goal value of 16 metres. These designs scored 2.75188 out of a
maximum score of less than 3.

 79

Figure 5.8: Three of the highest scoring designs for the low-rise block scenario,
with scores of 2.75188, and featuring 17 apartments in 24 metre high buildings

However, depending on the way the problem is formulated, these designs, though
highest-scoring, might not be the most desirable. If the issue is to find the designs
that fit the most flats into a building that’s only four storeys high (using 24 rule
applications), then clearly, the designs that are actually four storeys high are more
desirable. In that sense, the “best” design managed to fit 14 apartments versus 12
circulation blocks in a 16m high block, approximately 53.85% apartments. This best
design had a score of 2.736842.

Figure 5.9: The “best” design produced for the low-rise block scenario, scoring
2.736842 with 14 apartments within a height of 16m

Several more of the designs produced scored 2.684211 by fitting 13 apartments
within a height of 16 metres. Although these designs have a lower score than the 24
metre high designs, it is more likely that the solutions they provide are more
relevant.

Figure 5.10: Some of the "second best" solutions for the low-rise block
scenario, scoring 2.684211 with 13 apartments within a height of 16m

 80

This discrepancy between high scoring and more appropriate designs highlights an
important issue with the current prototype implementation, namely, the inadequacy
of the scoring system when competing goals are used. With the current model of
summing up weighted criteria, the user can attempt to rectify the situation by giving
the height criterion a much higher weighting than the apartment percentage
criterion. However, trial and error would be the only way to determine the weight
differential that ensures the best results. Ideally, Shape Evolution should be capable
of determining the designs that provide the best compromise between the two
competing scoring components and not allow a design’s score to increase by
severely undermining compliance with one of the criteria. A solution to this is the
use of Pareto optimisation, as discussed in section 5.3.2.

Figure 5.11: The results for the low-rise problem over 500 generations, with a
population of 500, and a set mutation rate of 0.5

This scoring issue might also go some way towards explaining the rather unexpected
phenomenon of scores decreasing over time in this scenario. The curves produced
when plotting score against generations are reminiscent of the typical genetic
algorithm progress curve seen in Figure 5.1 flipped along the horizontal axis, as
seen in the run using a population size of 500 and a set mutation rate of 0.5 (Figure

 81

5.11). The initial random populations have an average score of 2.5. Under the effect
of the genetic algorithm the average score curve decreases sharply and slowly settles
around the value 2.25. To say that this value represents the algorithm’s chosen
compromise between the competing goals of horizontal expansion and minimisation
of circulation would be misguided, as the evaluation routine has obviously chosen
other designs by giving them higher scores. The lower values are the result of the
application of the crossover and mutation operators, which, as they are, seem to be
letting go of the high-scoring schemata in favour of a wider exploration of the
problem space. This suggests that the crossover operator is disruptive, i.e. the
offspring produced through crossover is likely to perform very differently compared
to its parents.

This has little effect on the usefulness of the results produced in this scenario. The
maximum score curves in Appendix B do decrease in value. However, this decrease is
highly non-monotonic: a look at the maximum score curve in Figure 5.11 reveals
fluctuations around the value 2.6, with a constant supply of high-scoring solutions
among them (the highest-scoring of all designs showing up as late as generation
425). This does mean, however, that the genetic algorithm is not performing as well
as it should. Shape Evolution defaults to a random search that, though it may yield
results, is not offering the efficiency promised by the use of the genetic algorithm.

The graphs of the results for the low-rise scenario also serve to show clearly the
effect of the population size and the mutation rate on the rate at which the average
score curve reaches its stable value. By looking at the graphs for runs using
population sizes of 50, 200, and 500, and mutation rates of 0.005, 0.01, 0.05, 0.1,
and 0.5 (as presented in Appendix B), some obvious trends can be discerned. Firstly,
as noted previously, the increase in population (i.e. sample size) decreases the
fluctuations in the average score curve, thus revealing its underlying, basic shape.
Secondly, an increase in the mutation rate seems to compress the shape of the curve
horizontally, i.e. the stable value is reached more quickly. The increased mutation
rate allows the sampling of more new areas of the problem space at every

 82

generation, thus shortening the time required to reach the stable score value. This
suggests that mutation not only serves to maintain diversity and prevent the genetic
stagnation of the population, but also complements crossover in exploring the
solution landscape.

5.2.3 Views and Balconies

The third test scenario is an example of lenient goal requirements. The evaluation
function awards score points to a design only on the basis of the percentage of
apartments that, on the one hand, afford views in a particular direction (designated
as the positive i direction in the programme) and, on the other hand, have balconies.
32 rule applications are used to generate each design, a rather large number that
only slightly complicates things, and certainly does not impede the attainment of the
views and balconies goals.

Figure 5.12: The highest scoring design for the views and balconies scenario
with a score of 2.7 has 10 apartments, all with views in the desired direction,

70% of which have balconies

The highest scoring design for this scenario has a score of 2.7 and features 10
apartments, all of which have uninterrupted views towards the desired direction. 7
out of the 10 apartments have balconies. This champion design was produced using
a population size of 200 and a mutation rate of 0.5. It should be noted, however,
that it represents a prominent and solitary spike in the maximum score curve for this
run, as seen in Figure 5.13.

 83

Figure 5.13: The results for the views and balconies problem over 500
generations, with a population of 200, and a set mutation rate of 0.5, showing

the spike that produced the champion design

The second highest scoring design, shown in Figure 5.14, was also the result of a
spike in the run using a population size of 500 and a mutation rate of 0.05. This
design has a score of 2.666667, 8 out of its 9 apartments offer views in the desired
direction, and 7 out of 9 apartments have balconies. An interesting feature of this
design is an assembly of circulation modules at the top of the building that has no
function other than to fill up the required 32 positions in the genotype. Since all
three of the criteria employed in this design scenario are percentages of apartments
with particular properties (views to i+, balconies, no views), the number of
apartments and circulation modules used does not affect the score. Indeed, a design
with a single apartment with a balcony and the right view would achieve the
maximum score. (In fact, depending on how division by zero is handled in the
evaluation routine, a building composed entirely of circulation could satisfy all goals
and attain the maximum score.) The use of more circulation modules than
apartments might actually help produce designs with higher scores, firstly by placing
circulation blocks where it can be used to provide balconies for apartments in the

 84

floor above, and secondly by limiting the amount of apartments for which views and
balconies should be provided.

Figure 5.14: The second highest scoring solution for the views and balconies
problem, with score 2.666667

The score graphs present a more positive image of the effect of the genetic
algorithm. The average scores of the original, random populations is around 1.65. In
the four runs where a trend is most clearly discernible (population size 200 with
mutation rate 0.5, and population size 500 with mutation rate 0.05, 0.1, and 0.5) the
average score rises within the first 50 generations to settle around the value 1.76.
That quick initial increase in scores also seems to be affecting the maximum score
curve, although that is obfuscated by the violent fluctuations. While in the low-rise
scenario the algorithm has a detrimental effect to the average score of the random
population, in this case there is a welcome overall increase in scores.

Despite this increase, these results are disappointing in that there were no
champions achieving the maximum score, especially given the rather relaxed
requirements. There are fairly obvious ways to design a building that completely
fulfils the design goals; one example with 14 apartments is shown in Figure 5.15.
The fact that high scoring designs are identified as singular spikes in the maximum
score curves suggests that the capacity for higher scoring designs exists but the
algorithm fails to exploit them. (This can also be evidenced by the fact that, apart
from the test runs that used low values for the population size and the mutation

 85

rate, there was no sign of population convergence: there are no obvious common
sequences in the genotypes of the final population.) As a result of this failure to
exploit good performers, the real-life use of the designs produced in this scenario is
likely to be limited to the derivation of inspiration from their formal qualities. It is
clear that the performance of the genetic algorithm leaves something to be desired
in this case. However, in qualitative terms, the leaning tower archetype, one that
supports views and balconies in a single direction, can be recognised in many of the
best designs.

Figure 5.15: A human-designed solution for the views and balconies problem
with a perfect score of 3

5.2.4 Multiple Criteria

In the final design scenario for which the Shape Evolution prototype was called to
provide solutions there is a combination of the criteria used in the three previous
cases. The complexity of the scoring function is matched by the 64-bit genotype.
The two highest-scoring designs were both produced in a run using a population
size of 500 and a mutation rate of 0.05. Out of all criteria, these top solutions only
fully satisfied the height goal of 64 metres. The other criteria are all satisfied at
varying degrees, with some of the lower scoring designs doing better in several
areas. This is only to be expected when the scoring is subject to a large number of
factors that are linearly summed to a single value.

i

 86

Figure 5.16: The two highest scoring designs produced for the multiple criteria
scenario with scores of 5.048235 (left) and 5.036162 (right)

The general trend of the average curves for this scenario is similar to that observed
in the views and balconies scenario, at least for the runs with higher values for the
population size and mutation rate. There is a quick initial increase in the average
score from around 3.8 for a random population to a plateau around 4.1. However, it
is very difficult to discern that trend paralleled in the maximum score curves. Indeed,
in the runs using smaller populations and lower mutation rates, precipitous drops
can be observed in the maximum score curves, signifying the loss of high scoring
schemata (similar drops were observed in the results for the tower problem). These
drops happen within the first 250 generations and designs of similar scores do not
reappear for the remainder of the 1000 generations. In the case of the run using a
population of 50 designs and a mutation rate of 0.005 two substantial drops in the
maximum score curve can be seen. Importantly, the champion designs in this run
appeared at the very beginning, displayed a small increase until the third generation,
and subsequently disappeared altogether. Once more, this is linked to disruptive
crossover and a difficulty in exploiting high scoring designs.

 87

Figure 5.17: The results for the multiple criteria problem over 1000 generations,
with a population of 50, and a set mutation rate of 0.005, showing two

precipitous drops in the maximum score curve

A glance through the designs presented in Appendix D reveals great complexity and
variety. Despite the fact that many of the best designs are far from displaying the
desired functional characteristics, they offer designers choice based on their formal
characteristics. The most exciting forms can be used by the human designer at the
beginning of a design process that elaborates them and alters them to achieve
functional compliance.

5.3 Analysis of Results
In summary, these results have shown that the genetic algorithm is not working as
efficiently as expected. Two key problem areas have been identified. Firstly, the
genetic algorithm seems unable to exploit high scoring individuals. Secondly, the
algorithm seems to have difficulty in dealing with opposing criteria. In this section
these problems will be explained in detail, their significance will be discussed, and
potential ways to improve the behaviour of the Shape Evolution prototype regarding
these issues will be suggested as needed.

 88

5.3.1 Exploration Versus Exploitation

The trade-off between exploration and exploitation is a key issue in genetic
algorithms. Exploration refers to the ability to sample new areas of the design space
in search of better performers, while exploitation refers to the capacity to use the
schemata in the genotypes of good performers already in the population to produce
better offspring. Exploration and exploitation are thought to be antithetical in
nature, representing opposing forces that need to be balanced in order for the
genetic algorithm to effectively improve the population (Eiben and Schippers, 1998).

The application of the Shape Evolution prototype to the test scenarios revealed that
the genetic algorithm implementation used was deficient in terms of exploiting high
scoring individuals. This was made evident by the occurrence of spikes and
precipitous drops in the maximum score curves, pointing out that high scoring
designs were not retained. (Indeed, the incidence of spikes denotes successful
exploratory forays.) This phenomenon can be attributed to the genetic operators,
crossover and mutation, both of which can disrupt valuable schemata in the
genotypes of good performers. With the apartment block shape grammar used in the
prototype, even small changes in the rule application sequence can bring about
substantial changes to the phenotype and its evaluated properties. The effect of this
could be diminished by reducing the probability of crossover and/or the mutation
rate sufficiently in order to find a good balance between exploration and
exploitation.

It should be noted that the fact that crossover and mutation have the potential to
create invalid individuals should not affect the potential for exploitation. The
“controlled” crossover and mutation operators used in the prototype are designed to
be conservative, i.e. to maintain the status quo of genotypes that would have
otherwise produced invalid genotypes. Therefore, if an operator applied on a high
performance design were to produce an invalid individual, that operator application
would be cancelled, and the original high performer would be retained.

 89

Another potential culprit for the algorithm’s diminished capacity for exploitation
would be the selection process. The simple tournament selection employed, as
described in section 4.6, may be fair, but it is capable of leaving high scoring
individuals behind, simply by not picking them to enter a tournament in the first
place. A stronger selection method that ensures that the fittest individuals are
represented in the next generation, such as stochastic universal sampling (Prügel-
Bennett, 2000), would improve the results of the genetic algorithm by allowing
better exploitation. Alternatively, or additionally, elitism (De Jong, 1975) could be
employed. Elitism assures that some copies of the best individuals in the population
are placed in the next generation, bypassing the normal selection process, as well as
crossover and mutation. An instant effect of this would be that the maximum score
curves would be monotonically increasing. More importantly, it would ensure that
high quality schemata are always available to be used in crossover, allowing them to
be better exploited. Additionally, even if the crossover operator is overwhelmingly
disruptive, elitism will allow the algorithm to default to a hill-climbing strategy,
relying on mutation as the source of variation. When behaving in this fashion, the
genetic algorithm would work similarly to a simulated annealing algorithm, but with
the added benefit of a massively parallel search.

In all of the test scenarios it was observed that the average score curve would quickly
level off at a particular value, especially for large populations and high mutation
rates. In most cases, this value was higher than the average score of the initial
random population. In the low-rise scenario this value was actually lower, suggesting
that the algorithm merely settles at a value it is capable of, instead of constantly
optimising for higher scores. This “low potential” state for the average score seems
to be the result of heavy exploration of the score landscape combined with minimal
exploitation. The value at which the algorithm settles then represents the overall
distribution of fitness values in the design space. Different sets of evaluation criteria
are likely to produce specific average score values under such an extreme dominance
of exploration over exploitation. The solutions suggested above to bring a balance

 90

between exploration and exploitation would allow the genetic algorithm to break
free of this low potential state and further improve results.

5.3.2 Multi-Objective Optimisation

The Shape Evolution prototype guides the genetic algorithm using a number of
disparate quantifiable criteria, measured in different units. The goal numerical values
for all the criteria are restricted to ranges. For example, the percentage of apartment
modules in the total number of modules in the design can only lie in the range 0 % to
80%, the highest value occurring when there are four apartments attached to every
single circulation block (and then the percentage can only approach 80 %
asymptotically, as the initial circulation block, denoting the entrance, cannot have
any apartments adjacent to it). Similarly, the height and footprint goals can take
values between 4 m and 64 m in discrete 4 m steps because of the nature of the
shape grammar used, and the limits in the size of the array. The goals for balconies
and views are expressed in percentages of the total number of apartments in the
design. In order for the prototype to convert all these criteria into a single score
value they are normalised to the range 0 to 1, multiplied by their user-specified
weights, then added together.

While this method might be able to produce results that appear to address the
specified goals, it is in essence like “comparing apples to oranges” (Goldberg, 1989).
As mentioned in section 4.5 above, the linear addition of qualitatively different
goals, even after normalisation, buries the significance of each individual criterion.
Moreover, as seen in the results it is possible for a design to achieve a high score by
entirely failing to address one or more of the requirements and performing very well
with others. Choosing appropriate weights for the scoring components is a task that
requires a huge amount of trial and error for each set of functional requirements.
Designers using Shape Evolution as a tool would be most certainly put off by the
effort required.

 91

 The use of Pareto optimisation to tackle this problem has already been alluded to in
section 5.2.2. Instead of combining non-commensurable quantities in a single scalar
value, the fitness of a design can be thought of as a vector in n-dimensional space,
where the number of dimensions n is equal to the number of separate components
used. Thus the contribution of each component remains identifiable. Within this
framework, Pareto-optimal designs are those for which no further increase in one
vector component can be achieved without degradation in at least one of the
remaining components (Goldberg, 1989). Obviously, this means that there is no
single design representing the optimum; instead the best solution consists of a
Pareto-optimal set of designs, representing a selection of acceptable trade-offs
between opposing goals (as encountered in the low-rise block scenario). This fits in
with the intention for Shape Evolution to be used interactively by a designer who will
make the ultimate choice among a collection of good designs presented by the
programme. This method makes this choice a much better informed one by
encoding knowledge about the relationships of the optimised quantities, and
allowing the designer to exploit this information towards the achievement of
qualitative goals for the design (Radford et al., 1985). The mechanics of using Pareto
optimisation in the context of a genetic algorithm have been suggested by Fonseca
and Fleming (1993) in the form of Multiple Objective Genetic Algorithms (MOGAs).
Similar frameworks that use Pareto optimisation in design problems have been
suggested by Radford et al. (1985) in architectural design and by Matthews (2001) in
spatial allocation problems, namely land-use planning.

5.4 Summary
The testing of the Shape Evolution prototype revealed deficiencies in the way the
genetic algorithm searches through the design space. Solutions that would
effectively eliminate these deficiencies were suggested in the previous section.
Despite the less-than-perfect performance of the genetic algorithm (which still
managed to generate high performance solutions in many cases), the final designs
produced as solutions to the four example design scenarios had formal and

 92

functional merits, and could be easily utilised by the designers as concept designs or
merely as sources of inspiration. More importantly for this thesis, it has been shown
that the combination of shape grammars and genetic algorithms through the use of
a genotype encoding the rule application sequence allows the manipulation and
evolution of grammar-generated designs without leaving the grammar-specified
language. All of the champion designs produced were valid designs within the
language specified by the apartment block shape grammar.

 93

6
Conclusions and

Further Directions

6.1 Evaluation of Shape Evolution Prototype
Having performed tests with the prototype, general comments can be made with
respect to how Shape Evolution as a method, and its prototypical implementation,
have addressed the requirements outlined in the introduction of this thesis. Namely,
the goal was to produce a method and a tool that would be usable (i.e. fast and
uncomplicated to its intended users), able to suggest functional solutions, and
inspiring (by suggesting innovative design ideas). As argued, the use of shape
grammars as the representation is theoretically capable of satisfying another stated
goal, the ability to produce designs consistent with the designer’s stylistic and
aesthetic requirements.

6.1.1 Performance

The test runs of Shape Evolution used to provide data for the previous chapter took
up to ten hours to complete on a 867 Mhz Apple PowerMac G4 (a low-end computer
at the time of this writing). This should by no means be taken as an accurate
measure of the time required for each of these runs. The vast majority of these were
run in parallel with other applications and tens of other Shape Evolution instances,
all sharing the computational resources of the single processor in the test machine.
The measured times do, however, give some indication of the general speed of

 94

execution of Shape Evolution. It seems that useful results would require hours of
computation, rather than minutes or seconds, on a typical contemporary computer.

While the performance of the Shape Evolution prototype may not be ideal, and a far
cry from the envisioned real-time system, the reasons for this lie in the inefficient
genetic algorithm code. The coding process was result-oriented, only aiming to
produce working code, which inadvertently sacrificed efficiency. For example, there
exist several long loops that are largely redundant. Some of these are performed
thousands of times per generation. It is expected that recoding the prototype with
efficiency and optimised performance in mind by a proficient programmer would
drastically accelerate execution of Shape Evolution on existing hardware. Of course,
with the development of faster computer hardware (which, at this time, shows no
signs of slowing down) Shape Evolution might be able to offer the facility to tweak
parameters and monitor their results in real time in the not-so-distant future.

Beyond coding inefficiencies, the speed of the prototype is also affected in a more
fundamental way by the inclusion of the controls on the genetic operators. These
controls ensure that the changes they attempt on a rule sequence do not result in
teratogenesis, i.e. the generation of invalid individuals. It can be observed by the
discrepancy between the set mutation rate and the actual mutation rate that as low
as 10% of all attempted mutations are valid. This implies that the mutation algorithm
and its control mechanism (which involves going through embryogenesis to ensure
validity of the mutated genotype) take ten times more processing resources than
they would have needed if every mutation were possible. The controlled crossover
operator introduces a similar performance penalty. Tests during the development of
the prototype have shown that, depending on the design problem and settings, up to
40% of crossover attempts fail altogether, having exhausted all possible crossover
points for a given pair of genotypes. That involves calling the embryogenesis routine
for validation purposes up to 47 times per individual per generation, for designs
using 48-rule-long genotypes (one time for each of the 47 possible crossover

 95

points). It goes without question that using a shape grammar that allows all possible
rule sequences would allow Shape Evolution to run at much faster speeds.

Overall, however, the speed of the current prototype is not worrying. With future
faster hardware and optimised code it is expected that by the time Shape Evolution
has been developed to an extent where its use by professional designers is feasible
it might be able to also offer the real-time performance desired.

6.1.2 Usability

Currently, the Shape Evolution prototype is not a user-friendly programme, despite
the use of a clearly legible data entry panel (see Figure 4.5) and result report (see
Figure 4.6). One of the major issues limiting usability is the fact that it is not initially
clear what values should be used for the operating parameters of the genetic
algorithm, namely population size and mutation rate. It is also unclear what values
should be used as weights for the optimisation criteria (an issue which can be
eliminated if Pareto optimisation is used, as suggested above). The optimum values
for these parameters are different for each set of optimisation criteria, and can only
be derived after extensive experimentation through trial and error. Unfortunately, it
is widely recognised that the use of genetic algorithms involves a lot of guesswork in
an attempt to find the “sweet spot” of settings that will give the best results.

There have been several studies that aim to suggest the best settings for population
size and mutation rate (Mitchell, 1996, Goldberg, 1999), but these are particular to
specific kinds of genetic algorithms and are unable to deal with the variety of real-
life problems that genetic algorithms are called to tackle. Furthermore, designers
cannot be expected to be well-versed in genetic algorithm literature at this level.
There is no easy solution to this problem. Of course, designers could employ
computer scientists as consultants and to serve as Shape Evolution operators.
Alternatively, interested designers might chose to spend some time and acquire
some level of experience with the programme that would give them an intuition
about which values are likely to work best. But these solutions are far from ideal. It

 96

seems that the most user-friendly way to solve this problem is to transfer the
burden of deciding these values from the user to the computer. Davis (1991) has
suggested an approach in which the parameters pertaining to the genetic algorithm
operators can be adapted throughout the duration of the run in order to achieve
better results. This seems to be a sensible route to take when producing genetic
algorithms that are meant to be user friendly and generically applicable.

6.1.3 Utility

Without the benefit of a highly optimised genetic algorithm at its core, Shape
Evolution produces lower-scoring results, or takes significantly longer to find
satisfactory solutions. However, even with a severely crippled genetic algorithm
implementation, Shape Evolution is useful on the strength of its generation and
evaluation components alone, which can perform a random search of the problem
space. Used like that, before the genetic algorithm code for the prototype was
completed, the programme still produced evocative, inspiring, and even functional
designs. The added benefit of a guided search provided by a well-behaved genetic
algorithm is that this search is performed much more efficiently. The designs
produced for the example design scenarios during testing did have exploitable
properties. Even for the low-rise scenario, where the genetic algorithm’s
performance was the poorest, champion designs with the required characteristics
were produced. Therefore, from the point of view of usefulness to a designer, the
tests have shown the Shape Evolution prototype to be successful.

6.2 Shape Evolution in Comparison
With the benefit of having produced and used the Shape Evolution prototype, it
would be appropriate to attempt a comparison with other similar systems, as
mentioned in sections 2.5 and 2.6. To be meaningful, the scope of the comparison
will be limited to recently developed systems for building design with working
computer implementations: the room layout tool by Elezkurtaj and Franck (2000),
Caldas’s building form optimisation programme (2002), GADES (Bentley, 1999),

 97

Eifform (Shea, 2000), and the floor plan generator by Rosenman and Gero
(Rosenman, 1997b, Rosenman and Gero, 1999). However, even within this limited
selection, the comparison is problematic. The aforementioned systems are in various
stages of development and firmly belong in the realm of research. It would therefore
be impossible to compile a single “testing suite” of design problems that would be
capable of effectively measuring the comparative strengths and weaknesses of each
system. Furthermore, an attempt for such an objective test of the robustness of each
algorithm against a diverse selection of design challenges is impeded by the
specificity of some of the systems and/or their prototypical manifestations. Indeed,
it seems that the only kind of comparison not entirely precluded by the diversity of
this collection of systems is a qualitative one. However, along with a description of
each system’s method and the ways is which it diverges from the method followed
by Shape Evolution, an assessment can be made of each system’s position in the
design process and capacity for usable and novel solutions.

6.2.1 Compared to the Programme by Elezkurtaj and Franck

Elezkurtaj and Franck (2000) have presented a software prototype for a system that
supports the design of architectural floor plans. The system uses an evolutionary
strategy and a genetic algorithm in combination, in order to fit a user-specified set
of rooms of particular proportions into a user-specified floor outline. The
configuration of the rooms is further constrained by a topological matrix that defines
requirements of adjacency between rooms. As it was mentioned in section 2.5 this
programme, along with the one by Caldas (2002), comes into the design process
after several key elements of the design have been determined by hand. As a result,
the input requirements of this system are high: the user must provide the
geometrical properties of the rooms and the floor plate as well as the topological
relationships between the rooms. The programme uses this input to find the
configuration that provides the closest fit to the floor outline. Substantial care was
taken so that the software is optimised for speed. This allows the interface to display
the evolution of the fittest solution as a plan on screen. It also gives the user the

 98

facility to interact with that evolution in real time by editing the geometry and
arrangement of rooms using the mouse, and also to alter the weights of the
adjacency constraints. The design process when using this system can then be
summarised by the following diagram:

Figure 6.1: Design process when using the programme by Elezkurtaj and
Franck; stages represented by an orange box are supported by the software

It should be noted that this system is designed to tackle a very specific, albeit
central, sub-problem of architectural design. While many design problems can be
reduced to a problem of component configuration, it is clear that this system is still
unable to alter the geometry of the building envelope. This severely limits this
system when it comes to the exploration of building form, a key consideration in
initial design stages. By contrast, Shape Evolution can be introduced to the design
process at an earlier stage, when the revelation not immediately obvious novel
solutions might have the greatest impact. In addition, Shape Evolution can also be
used to solve similar configuration problems by using a shape grammar that features
the building envelope as the initial shape and subdivision rules such as those
employed by the Palladian grammar (Stiny and Mitchell, 1978). The soft changes to
the component geometry could also be incorporated in a Shape Evolution process by
using a parametric shape grammar.

The most significant contribution of this work is the real-time interface elements of
it. The on-screen graphical manipulation of the solution during the run is an intuitive
and powerful way of guiding the evolutionary process. Of course, this is a feature
particularly suited to geometrical manipulation; altering the product of grammatical
generation could not happen in as fluent a fashion. However, the importance of a
responsive interface cannot be stressed enough: a tool can only be useful if it’s
imminently usable. The interface of the Shape Evolution prototype has not been

Design building

envelope
Specify number,
geometry, and
adjacency of
components

Fit components
within envelope

Refinement and

detailing

 99

developed as thoroughly, but it is recognised that real-time user interaction must be
part of the finished tool.

6.2.2 Compared to the Programme by Caldas

Caldas (2002) proposed a system that can optimise a schematic building design for
its performance with respect to daylighting and energy use. The schematic design to
be optimised is represented by pre-arranged three-dimensional blocks whose
dimensions can be modulated, in user-constrained ways, by a genetic algorithm. For
example, in the case of a house schema that consists of eight blocks in a 2 × 2 × 2

arrangement (four blocks on each of two floors), the point at which all blocks are
tangent will remain fixed while the blocks’ horizontal dimensions can change; the
height of only the top floor blocks can change; the top floor blocks can also feature
inclined roofs, with the lowest point of the incline always towards the interior of the
building. This schema is fed into the system as a parametric geometric model. The
genetic algorithm then generates populations of design variants by attaching
different values to these parameters. The genetic algorithm assigns fitness scores to
each variant based on calculations regarding energy consumption. After 200
generations, the whole final population of 30 design variants is presented as output.
The design process using this system can be summarised as follows:

Figure 6.2: Design process when using the programme by Caldas; stages
represented by an orange box are supported by the software

This process is very similar to that suggested by the system by Elezkurtaj and
Franck. However, instead of deriving new configurations, Caldas limits the scope to
the parametric manipulation of geometry, something that the programme by
Elezkurtaj and Franck covers as well. In fact, despite Calda’s assertion that her
system is not an optimisation tool, its reliance on a schematic design as input makes
it just that. The system’s inability to add geometrical information to that input

Design building
configuration

Define geometric

parameters

Optimise
parameter values

Refinement and

detailing

 100

precludes its characterisation as a generative system. As Bentley (1999) says, to
move from optimisation to the generation of new designs, the system must be
capable of modifying every part of the design. As a result, the observations made in
the previous section regarding the capacity for the exploration of building form
stand in this case as well. Similarly, Shape Evolution could emulate the functionality
of this by using a parametric shape grammar. However, Shape Evolution as it stands
has a much grater capacity for the production of unanticipated, novel solutions.

6.2.3 Compared to GADES

GADES (genetic algorithm designer) is a system that employs a genetic algorithm for
the generation of new designs from scratch (Bentley, 1999). This system uses
primitives called “clipped stretched cuboids.” Essentially, these are parallelepipeds of
variable dimensions and position, which have been sliced by a plane of variable
orientation. Such a primitive can be defined by nine parameters. In GADES, designs
are composed out of a number of attached clipped stretched cuboids. Similarly to
the two systems mentioned so far, the genetic algorithm manipulates form by
altering the values of the nine parameters for each primitive. However, GADES goes
further by introducing a hierarchical genotype and a mutation operator that can add
or delete a primitive. In this way, GADES can start from random blobs that are then
shaped by the genetic algorithm using a selection of evaluation modules.
Furthermore, the generation can be controlled by the introduction of fixed geometry
that cannot be altered during the evolutionary process. GADES has been successfully
employed to generate coffee tables, steps, heatsinks, optical prisms, boat hulls, and
race cars. In architecture, it has been applied to the problem of the hospital layout,
albeit with a few problem-specific additions to the code, in order to guarantee the
separation of floors and a fixed building envelope. In effect, for the purpose of
proving that GADES can tackle a classic architectural problem, the programme had to
be “dumbed down” to attack the problem in the same way that a less capable two-
dimensional algorithm would. The power of GADES is most evident when it is called

 101

to generate complex three-dimensional designs such as coffee tables. Then, the
design process can be summarised by this diagram:

Figure 6.3: Design process when using GADES; stages represented by an orange
box are supported by the software

Indeed, this is an oversimplification; given that the results of the form generation will
most probably feed back to the choice of evaluation criteria and goals, that aspect of
the design process will be supported by GADES as well.

The key difference between GADES and Shape Evolution is the choice of system of
representation for the designs: where GADES uses a completely generic system of
geometrical primitives, Shape Evolution relies on a shape grammar. While this allows
GADES to be used for any design problem with minimal initialisation, it means that
there is little control over the nature of generated form. The choice of shape
grammars for Shape Evolution relates to their use of rules and structure, which allow
the limitation of the space of formal possibilities to those that adhere to an
architectural style. They also allow the composition of designs out of modular
components. This is not possible with GADES. On the contrary, it is conceivable that
Shape Evolution could emulate this sort of form generation by using a parametric
grammar that uses clipped stretched cuboids as shapes. At the same time, Shape
Evolution requires a significant amount of time for the design of the shape grammar
that will be used, a task that currently is left entirely to the human user. The design
process using Shape Evolution can be summarised by the following diagram:

Choose evaluation

objectives

Generate
form

Refinement and

detailing

 102

Figure 6.4: Design process when using Shape Evolution; stages represented by
an orange box are supported by the software

This process lacks the immediacy afforded by GADES, but enables the designer to
control both the stylistic and the functional validity of the generated designs.

A significant benefit of the GADES approach is that its flexible genetic algorithm is
already capable of meaningful crossover and mutation using genotypes of variable
length. This is of course important for Shape Evolution, because the number of rules
employed to solve a particular problem should be an emergent feature of the
solution, and not an a priori constraint.

6.2.4 Compared to eifForm

EifForm is a tool more akin to Shape Evolution in that it combines a shape grammar
with an evolutionary algorithm (Shea 2000, Shea 2003). As mentioned in section 2.6,
eifForm is based on shape annealing, a combination of a shape grammar and
simulated annealing. In eifForm, that shape grammar is predefined and fixed and
geared towards the generation of triangulated frame structures. The grammar itself
is fairly simple: it consists of nine topology transformation rules, which can add and
remove structural members, a parametric shape transformation rule, which can move
any of the nodal points of the structure in space, and a parametric size
transformation rule, which can alter the thickness of each structural member. This
grammar allows the generation of single layer free form lattice structures in three
dimensions. The user is required to input a three-dimensional surface to which the
structural lattice will be projected. In other words, the user specifies the overall
three-dimensional form of the structural surface. The simulated annealing portion of
the system alters an initial random design slightly and picks the altered design if it
performs better than the previous design (the worse design is sometimes picked
according to a probability function in order to allow the system to escape local

Specify shape

grammar

Choose evaluation
objectives

Generate
designs

Refinement and

detailing

 103

optima). The designs are evaluated for mass, topological complexity, and structural
performance. The design process while using eifForm can be summarised like so:

Figure 6.5: Design process when using eifForm; stages represented by an
orange box are supported by the software

This system is different to Shape Evolution in two important ways. Firstly, in eifForm
there are no provisions for modifying the shape grammar. Its triangulated lattice
structure grammar allows the system to generate these kinds of structures alone.
While there is no fundamental reason why the system could not use any other shape
grammar, the development of eifForm has focused on this specific design problem.
Shape Evolution was conceived from the start as a generic design system, and
therefore the shape grammar is intended to be user-definable. However, choosing
not to be bogged down by the problems relating to the creating of a capable shape
grammar parser, this feature was not incorporated in the current Shape Evolution
prototype.

The second major difference is that while Shape Evolution performs a massively
parallel search by working with populations of designs, eifForm’s hill-climbing
search algorithm works on one design at the time. At the same time, the stochastic
nature of the algorithm means that every run will produce a different solution, even
with the same user input. As a result, in order to produce a number of alternative
designs to choose from, it is necessary to run eifForm several times. It also means
that eifForm is more likely to follow dead-end or low-fitness directions through the
search space.

 Finally, it should be mentioned that the specification of the projection surface by the
user might impede the generation of truly novel structures. However, in its niche of

Specify projection

surface

Choose evaluation
objectives

Generate

structural lattice

Refinement and
detailing

 104

providing novel solutions for standard structures such as trusses, domes, and
transmission towers, eifForm has been proved highly successful.

6.2.5 Compared to the Programme by Rosenman and Gero

The combination of a design grammar and a genetic algorithm is used by Rosenman
and Gero for the generation of house floor plans (Rosenman, 1997b, Rosenman and
Gero, 1999). In that, it is much like Shape Evolution. However, much like with
eifForm, the grammar is used here as a generator of geometry. In this case, the
grammar uses edge vectors to generate closed orthogonal polygons, which represent
floor plan rooms. The genetic algorithm then conducts a parallel search for floor
plans that minimise the perimeter to area ratio and conform to functional adjacency
requirements between different rooms. Key to this system is the use of multi-level
hierarchical genotypes, which reflect the component assembly nature of the design
solutions. House plans are assemblies of rooms/polygons, which in turn are
assemblies of edge vectors. This aims at the breaking down of the evolutionary
process into discrete sections by hierarchical level. Different fitness functions come
to play at the edge vector level and at the room assembly level. The shorter
genotypes that result from this allow a more focused and efficient search at each
level. The authors assert that this method will have significant advantages for
problems where the solutions can be represented as hierarchical assemblies of
components. The Shape Evolution prototype uses flat, linear genotypes, but the use
of hierarchical genotypes would make sense for even the simple apartment building
problem presented in this thesis, as seen in section 6.3.2 below. However, it seems
that the added complexity of separate evaluation criteria at each hierarchical level
might be problematic: the user would have to input the objectives for each level at
the beginning of the process.

Most importantly, the use of a design grammar by Rosenman and Gero does make
use of its full potential. There is no interest in preserving the grammatical nature of
the generated designs during the evolutionary stage, nor are grammars employed as
descriptors of style. It must be acknowledged, however, that the key focus of the

 105

research by Rosenman and Gero is on allowing the genetic algorithm to search more
efficiently by segmenting the task into more manageable portions.

6.2.6 Conclusions Drawn from the Comparison

In most cases, this comparison has shown that Shape Evolution is a more general
method, even to the extent of being capable of emulating the functionality of more
specific methods shown here. While other prototypical implementations of
generative design systems have gone further by focusing on particular aspects of
algorithms or interface, it seems that a final version of Shape Evolution would be a
more useful tool.

6.3 Further Work on the Shape Evolution Prototype
Several improvements can be made to the prototype within its limited scope as a
generator of apartment blocks. Some are detailed below.

6.3.1 Site Conditions

Shape Evolution has not been tested on a three-dimensional array that has been
pre-initialised with values representing site conditions or existing buildings.
However the likelihood of success in tackling site conditions is very high, as merely
increasing the shape grammar iterations to an appropriately high number forces the
apartment block geometry onto the boundaries of the cubic 16 × 16 × 16 array,

squeezing the building into its container, and causing it to take its form, as seen in
Figure 6.6. Consequently, it should be trivial to “sculpt” the built form generated by
Shape Evolution by forcing it to grow within the void areas in a pre-initialised three-
dimensional array. This could be used to eliminate possible conflicts between the
new design and existing features on the site, or to force the building to grow within
a particular three-dimensional envelope for aesthetic reasons.

 106

Figure 6.6: An apartment block generated using 512 rule applications taking the
shape of a cube by being forced against the boundaries of allowable space

6.3.2 Genotype Elaboration

For the sake of simplicity and for ease of development, the genetic algorithm used in
the prototype can only deal with fixed-length genotypes. The length of the
genotype, and by extension the amount of modules used in the building, are preset
before the beginning of the Shape Evolution run. This is another parameter whose
value will largely be up to guesswork. Furthermore, most problems would benefit
from the use of a variable-length genotype. This can be evidenced by the design
shown in Figure 5.14, which features a large assembly of redundant circulation
blocks. The low-rise block designs could benefit too, as the necessity to use a fixed
number of rule applications forces the addition of circulation blocks which
compromise the attainment of the maximum percentage of apartments requirement.
For this reason, it is believed that the algorithm could gain a large amount of
flexibility by being rewritten to allow the manipulation of variable length genotypes.

Currently, the Shape Evolution prototype produces buildings that are served by a
single circulation route. This single route corresponds to the single string for the

 107

sequence of rules, ensuring contiguity of circulation and accessibility for all flats, as
explained in section 3.4. It is obvious that this is not always ideal. Especially for the
larger buildings produced, i.e. those with the largest number of grammar rule
applications, the circulation routes suggested by shape evolution are entirely
impractical. It would be helpful if the largest and more complicated buildings could
have two or more ways into them, not to mention the need for fire escape routes.

Still, with the current shape grammar, the rule sequence string ensures the
contiguity of the circulation route. A simple way to add further circulation routes
would be to use a genotype composed of two or more separate strings, manipulated
by the genetic algorithm as a single entity, using a customised crossover operator.
That system would produce buildings with as many independent circulation routes
as strings, but it would not accommodate the crossing of circulation routes. To
achieve that, the genotype should be reformulated as a lattice network, as shown in
Figure 6.7. This method still relies on strings of circulation, but allows the sharing of
nodes between these strings.

Figure 6.7: Diagram of three strings of circulation crossing and sharing nodes

A further elaboration would require doing away with the concept of strings
altogether. The significance of the connections between the bits of the string can be
seen when the string is reduced to a chain connecting the rules adding circulation
blocks, with the apartment rules attached to the circulation node to which they
relate. The rules adding apartments can then be seen as sub-branches of the
original chain. To ensure contiguity of circulation it is sufficient for the circulation
rules to be connected – it is not necessary for that connection to be linear. With that
in mind, a genotype in the shape of a tree would produce a building with a tree of

 108

circulation, i.e. a single entrance and branching routes. Furthermore, a more
complicated system of interconnected routes with multiple start and end points
could be represented by a genotype in the form of a general network of circulation
rules. Again, in this framework, the apartment blocks can be seen as “hanging” off
the circulation nodes, up to four per node (an upper limit dictated by the physical
characteristics of this particular grammar). Representing them as linear branches
would not be appropriate, as their order is of no consequence to the phenotype.

19 2 13 21 16 7 20 21 2 11 17 1 4 21 1 21 14 5 8 18 21 5 1 17

19

2

13

21

16

7

20 21

2

11

17

1

4

21

1

21

14

5 8

18 21

5

1

17

Figure 6.8: A 24-rule genotype from the Shape Evolution prototype and its
reinterpretation using a more elaborate topology

Figure 6.9: Examples of genotypes represented by trees or general networks of
circulation units, with the apartments attached to circulation nodes

Obviously, the use of these elaborate genotypes would require new genetic
operators, and increase the complexity of the algorithm. However, they have the
potential of significantly improving the ability of the genetic algorithm to manipulate
the building designs in a meaningful way.

 109

6.3.3 Interface

The user interface of the prototype was put together only to facilitate the
development process; no thought has been given to its use by an inexpert designer.
The current implementation treats data entry, evolution, and the presentation of
output as discrete steps. Indeed, the former is done using a custom control panel
window, the second takes place in a UNIX terminal window, and the latter uses a web
browser and a VRML plug-in. A more polished version of Shape Evolution intended
for public consumption should combine these tasks in a single application
environment, perhaps using OpenGL for the three-dimensional representation that is
currently done using VRML. In combination with faster operation, this single
environment would allow the designer to quickly test the use of different parameters
and visually evaluate the results. Real-time operation would enable Shape Evolution
to take its place in the designer’s workflow as an effective source of inspiration.

When it comes to the specification of evaluation criteria, a more flexible and
intelligent system would be desirable. For example, the interface should allow the
specification of ranges of values for evaluated quantities as goals, instead of single
values. Additionally, the user should be alerted when antagonistic goals have been
selected. This can be achieved by encoding a limited amount of knowledge-based
information about the likely interactions of the evaluated quantities.

 Although the development of an interface of this sort is beyond the scope of this
thesis, its availability would allow the testing of Shape Evolution by putting it in the
hands of designers. Their feedback would be invaluable in evaluating and improving
the interface, as well as the core algorithm itself.

6.4 An Application of Shape Evolution
In the autumn of 2003, the opportunity arose to employ Shape Evolution as a tool for
the design of a system for low-cost housing in Chile, as an entry for the Elemental
competition (see http://www.elementalchile.org/). The entry was produced as a
collaboration between architectural teams End Studio and Shaolin 76. In brief, the

 110

competition called for the design of a housing complex that would place 150 family
homes of no more than 30 m2 each on 1 hectare, at a cost of no more than USD
7,500 per home. In addition, the brief required the provision of quality
neighbourhood spaces and the flexibility for future growth.

The End Studio/Shaolin 76 proposal uses a system of prefabricated panels to form
walls, floors, and roofs, by placing them between steel columns arranged in a grid. A
rendering of an example housing block constructed using this component system is
shown in Figure 6.10. A slightly modified version of the Shape Evolution prototype
code was used to suggest economical and functional conglomerations of
apartments. Limiting the amount of circulation space required to serve all
apartments was one of the primary optimisation goals for Shape Evolution. The
customisations to the code of the prototype were mostly changes to the shape
grammar rules in order to allow the generation of 30 m2 apartments. The
programme was used to generate a large number of high-performance designs. The
most appealing of these were selected and their VRML files as output from Shape
Evolution were imported into a three-dimensional modelling software package. The
designs were then modified by hand if required, before being further elaborated by
the addition of more detail and the application of material textures. Beyond ensuring
the production of economical designs, Shape Evolution was capable of creating
formally evocative and innovative apartment blocks that went a long way towards
satisfying the requirement for quality neighbourhood spaces.

 111

Figure 6.10: An example of a low-cost housing block from the End
Studio/Shaolin 76 entry to the Elemental competition

The teams’ use of Shape Evolution did not stop there with this project. As part of the
requirement for flexibility for future growth, and to further drop the cost, it was
decided to eliminate the architects from the process of extension of the housing
project. The architects’ role in this proposal would be to come up with a system that
would allow the users of the housing to generate further designs and construct them
themselves. The simple column grid and component system reduces the
requirements for construction expertise for the erection of one of these blocks.
When it comes to design, a user-friendly version of the Shape Evolution programme
with a limited set of adjustable parameters would be prepared for the use of the
inhabitants of the housing project. The generation of new designs and their
translation into buildings is thus reduced to a simple, efficient, and economical
process.

 112

This suggestion for the use of Shape Evolution was surprising, as it went beyond its
intended use as a design tool for the studio. Having said that, this idea is in perfect
compliance with DeLanda’s and Leach’s view of the architect as a controller of
processes as opposed to a sculptor of form, as mentioned previously in section 1.4.
In this case, this concept is taken up one level of generalisation, with the architect
merely specifying a process and surrendering its control to the future users of the
designed artifacts.

6.5 Further Work on Shape Evolution
Several improvements to the Shape Evolution prototype have been suggested so far
in sections 5.3, 6.1, and 6.3. These include the use of Pareto optimisation to deal
with multiple objectives more effectively, the use of more elaborate encoding
topologies, and the enhancement of the user interface. However, the purpose of the
prototype was merely to provide proof of concept for Shape Evolution as a method. A
lot more needs to be achieved for Shape Evolution to become practical as a tool. This
section will suggest directions for further research.

From the outset, Shape Evolution was described as a generic method. For the
purposes of this thesis the prototype used a hard-coded shape grammar and
selection method, as well as hard-coded evaluation functions, genetic operators, and
representational frameworks. To produce a tool that can be truly generically
applicable all these components must be interchangeable plug-ins. These plug-ins
can either be written by advanced users, or prepared as presets that designers can
choose from. Plug-in versions of complex analytical software dealing with structure,
lighting, acoustics, or costing could thus be employed as part of the evaluation
routine. Extensive recoding would be needed to create a core framework that could
exploit all these plug-in components. In the meantime, hard-coded prototypes
pertaining to a wide variety of examples would be desirable, in order to demonstrate
the method’s applicability to a wide range of problems.

 113

Another promising route to explore would be the increase of interactivity between
Shape Evolution and the designer. As it stands, the user provides input at the
beginning of the programme and then waits for the end of the programme to get the
results. The designer could be further engaged with the evolution process by being
asked to provide feedback on a selection of solutions at various stages along the
course of evolution. This could be done by selecting preferred designs (much like the
way evolution is guided in Dawkins’s (1986) biomorph programme), assigning
scores, or ranking designs. In effect, this would be an additional scoring component,
providing evolutionary pressure for unquantifiable or ill-defined criteria. This sort of
user reinforcement of the evaluation process would also allow the algorithm to waste
fewer processing cycles on directions that the designer deems uninspiring or
inappropriate.

The introduction of such review points in the course of evolution could also be used
as an opportunity to tweak parameters in response to the solutions produced so far.
To give an example taken from the Shape Evolution prototype, when asked to
generate tall buildings with a small footprint, Shape Evolution often produces
apartment blocks with floors that only contain circulation and no apartment units.
This is of course not a desirable trait, and it could be easily discouraged by adding
an evaluation component that severely penalises designs whose shape code contains
none of the rules 1 to 16 in between two instances of rule 21. The ability to perform
these changes would rely on a successful development of the plug-in framework
mentioned above, as well as a user interface for defining evaluation criteria. In a
similar fashion, the primitives and rules of the shape grammar could be altered
during the evolutionary process, thus altering the style and character of the
produced designs and providing more opportunities for the generation of innovative
forms (Knight, 1994).

In terms of usability, it would be very convenient if the specification of the shape
grammar could be done by example. The first steps towards algorithms that would
be able to automatically derive grammatical rules that would accommodate a given

 114

body of existing designs have already been taken. (Rosenman and Gero, 1999,
Rudolph and Alber, 2002). Such a system, if perfected, has the potential to vastly
improve the creative capacity of a designer using Shape Evolution.

Finally, it would be extremely inspiring to test the concept of Shape Evolution
disciplines other than architecture. Theoretically, as long as a generative grammar
can be conceived for a particular kind of work or design, and as long as the desirable
qualities of that work or design can be quantified, Shape Evolution should be able to
contribute. Disciplines in which Shape Evolution could be applied with satisfactory
results include graphic design, industrial design, painting, sculpture, civil
engineering, mechanical engineering, automotive and aeronautical engineering, and
musical composition.

6.6 Conclusions
By testing it in a variety of scenarios Shape Evolution as a method has been shown to
have the capacity to generate functional, unusual, and inspiring designs. Deficiencies
in the genetic algorithm that was used in the prototype, and possible ways of
eliminating them were identified. However, these deficiencies are secondary.
Crucially, it was demonstrated that the combination of a shape grammar with a
genetic algorithm for optimisation is feasible and offers a number of important
advantages.

Shape Evolution allows for the definition of a design space by using a shape
grammar, and only searches for solutions inside this design space. This offers
designers a significant amount of control over particular features of generated
designs, namely the aspects of design that can be attributed to a particular style.
Using computational power for what it can do best, Shape Evolution carries out a
massively parallel serendipitous exploration of that design space that can yield high-
performance solutions. The high degree of separation between the designer’s input
and the programme’s output means that these high-performance designs are also

 115

unanticipated, a quality that can inspire the designer towards innovative formal
solutions.

With the improvements suggested in this chapter, an easy to use Shape Evolution
programme would be a valuable addition to many designers’ studios. It would allow
different design languages, search algorithms, and evaluation routines to be
plugged-in. In conjunction with faster, or even real-time operation, these
components could be interchanged as needed to generate better results.
Incorporating user feedback along the course of the evolutionary process would
further allow the optimisation of designs using criteria that cannot be easily
formulated or are entirely unquantifiable.

It should be restated that while Shape Evolution is intended to be generically
applicable it is not universally recommended. Shape Evolution is merely one tool, one
design method among many, and its use will be more appropriate to particular kinds
of projects. The low-cost housing project in Chile that was mentioned in section 6.4
was an especially good match for this method, even introducing the use of Shape
Evolution as a way to involve communities in the design of their own environment.

Algorithmic design methods are gaining momentum with architects. It is hoped that
interest and research on Shape Evolution and other similar design tools will continue
in the future, enabling the production of spaces that are not merely economical, but
are also functional, innovative, and beautiful, and can delight their users.

 116

References

Alexander, C. (1965). The question of computers in design.Landscape, (Spring), pp.
6-8.

Asimow, M. (1962). Introduction to Design. Englewood Cliffs, New Jersey: Prentice-
Hall.

Auger, B. (1972). The architect and the computer. London: Pall Mall Press.

Barnes, M., Dickson, M. and Happold, E. (2000). Widespan roof structures. London: T.
Telford.

Bentley, P. J. (1996). Generic evolutionary design of solid objects using a genetic
algorithm. PhD thesis, University of Huddersfield, Huddersfield.

Bentley, P. J. (1999). From Coffee Tables to Hospitals: Generic Evolutionary Design.
In: Evolutionary design by computers (Bentley, P. J. ed.), pp. 405-422. San
Fransisco: Morgan Kaufmann Publishers, Inc.

Cagan, J. and Mitchell, W. J. (1993). Optimally Directed Shape Generation by Shape
Annealing. Environment and Planning B, 20, pp. 5-12.

Caldas, L. (2002). Evolving three-dimensional architecture form. In: Artificial
Intelligence in Design '02 Proceedings (Gero, J. S., ed.), pp. 351-370.
Cambridge: Kluwer Academic Publishers.

 117

Cawthorne, D. A. and Sparreboom, M. E. (1995). Evolve - A generative,
environmental optimisation tool for architects. In: Preprints of the IFIP WG5.2
Formal Design Methods for CAD Conference (Gero, J. S. and Sudweeks, F.,
eds.), pp. 51-65. Mexico City: Key Centre of Design Computing, University of
Sydney.

Chalmers, J. (1972). The development of CEDAR. In: Proceedings of the international
conference on computers in architecture, pp. 126-140. London: British
Computer Society.

Chan, K. H., Frazer, J. H. and Tang, M.-X. (2002). An evolutionary framework for
enhancing design. In: Artificial Intelligence in Design '02 Proceedings (Gero, J.
S., ed.), pp. 383-403. Cambridge: Kluwer Academic Publishers.

Chase, S. C. (2000). User interaction in grammar based design systems: from
interface analysis to formal models. In: Digital Creativity Symposium
Proceedings, pp. 61-70. London: The University of Greenwich.

Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge,: M.I.T. Press.

Christiansen, F. B. and Feldman, M. W. (1998). Algortihms, genetics, and
populations: The schemata theorem revisited. Complexity, 3 (3), pp. 57-64.

Constantinou, C. (2001). Can computers design? MArch thesis, University of Bath,
Bath.

Cross, N. (1977). The automated architect. London: Pion.

Davis, L. D. (1991). Handbook of genetic algorithms. New York: Van Nostrand
Reinhold.

Dawkins, R. (1986). The blind watchmaker. 1st American. New York: Norton.

 118

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan, Ann Arbor.

De Landa, M. (2001). Philosophies of Design: the Case of Modeling Software. In: Verb
processing : architecture boogazine (Salazar, J. ed., pp. 131-143. Barcelona:
ACTAR.

De Landa, M. (2002). Deleuze and the Use of the Genetic Algorithm in Architecture.
In: Designing for a digital world (Leach, N. ed., p. 141 p. Chichester: Wiley-
Academy.

Dreyfus, H. L. (1972). What computers can't do; a critique of artificial reason. New
York: Harper & Row.

Duarte, J. (2001). Customising mass housing: A discursive grammar for Siza's
Malagueira houses. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA.

Eiben, A. E. and Schippers, C. A. (1998). On evolutionary exploration and
exploitation. Fundamenta Informaticae, 35, pp. 35-50.

Elezkurtaj, T. and Franck, G. (2000). Interactive floor plan design supported by an
evolutionary strategy and a genetic algorithm. In: Artificial Intelligence in
Design '00 Poster Abstracts (Gero, J. S., ed.), pp. 11-14. Worcester, MA: Key
Centre of Design Computing and Cognition.

Fogel, D. B. and Council, I. N. N. (1995). Evolutionary computation : toward a new
philosophy of machine intelligence. New York: IEEE Press.

Fonseca, C. M. and Fleming, P. J. (1993). Genetic algorithms for multiobjective
optimization: formulation, discussion and generalization. In: Genetic
Algorithms: Proceedings of the Fifth International Conference (Forrest, S.,
ed.), pp. 416-423. San Mateo, CA: Morgan Kaufmann.

 119

Frazer, J. (1995). An evolutionary architecture. London: Architectural Association.

Funes, P., Lapat, L. and Pollack, J. B. (2000). EvoCAD: evolution-assisted design. In:

Artificial Intelligence in Design '00 Poster Abstracts (Gero, J. S., ed.), pp. 21-
24. Worcester, MA: Key Centre of Design Computing and Cognition.

Funes, P. and Pollack, J. (1999). Computer Evolution of Buildable Objects. In:
Evolutionary design by computers (Bentley, P. J. ed., pp. 387-403. San
Fransisco: Morgan Kaufmann Publishers, Inc.

Gips, J. (1979). Artificial Intelligence. Environment and Planning B, 6, pp. 353-364.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning. Reading, Mass.: Addison-Wesley Pub. Co.

Goldberg, D. E. (1999). The Race, the Hurdle, and the Sweet Spot. In: Evolutionary
design by computers (Bentley, P. J. ed., pp. 105-118. San Fransisco: Morgan
Kaufmann Publishers, Inc.

Heisserman, J., Callahan, S. and Mattikalli, R. (2000). A design representation to
support automated design generation. In: Artificial Intelligence in Design
2000 (Gero, J. S., ed.), pp. 545-566. Worcester, MA: Kluwer Academic
Publishers.

Hersey, G. L. and Freedman, R. (1992). Possible Palladian villas : plus a few
instructively impossible ones. Cambridge, Mass.: MIT Press.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The
University of Michigan Press.

Johnson, S. (2001). Emergence : the connected lives of ants, brains, cities, and
software. New York: Scribner.

Kahn, L. ed. (1973). Shelter. Bolinas, California: Shelter Publications.

 120

Kanal, L. and Cumar, V. eds. (1988). Search in artificial intelligence. Spring-Verlag.

Knight, T. W. (1981). Languages of designs: from known to new. Environment and
Planning B, 8, pp. 213-238.

Knight, T. W. (1994). Transformations in design : a formal approach to stylistic
change and innovation in the visual arts. Cambridge ; New York: Cambridge
University Press.

Knight, T. W. (1999). Shape Grammars in Education and Practice: History and
Prospects. International Journal of Design Computing, 2.

Knight, T. W. (2003). Computing with emergence. Environment and Planning B, 30,
pp. 125-155.

Koutamanis, A. (2000). Representations from generative systems. In: Artificial
Intelligence in Design '00 (Gero, J. S., ed.), pp. 225-245. Dordrecht: Kluwer.

Lawson, B. (1990). How Designers Think: The Design Process Demystified. 2nd.
London: Butterworth Arthitecture.

Leach, N. (2002). Designing for a digital world. Chichester: Wiley-Academy.

Leach, N., Williams, C. and Turnbull, D. (2003). Digital tectonics. Chichester: Wiley.

Matthews, K. B. (2001). Applying Genetic Algorithms to Multi-objective Land-Use
Planning. PhD thesis, The Robert Gordon University, Aberdeen.

McGill, M. C. (2001). A Visual Approach for Exploring Computational Design.
SMArchS thesis, Massachusetts Institute of Technology, Cambridge, MA.

Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, Mass.: MIT
Press.

Mitchell, W. J. (1990). The logic of architecture : design, computation, and cognition.
Cambridge, Mass.: MIT Press.

 121

Mitchell, W. J. (1999). CAD/CAM and the web at the frontiers of architectural
practice. In: Design Computing on the Net '99 Proceedings.
http://www.arch.usyd.edu.au/kcdc/conferences/dcnet99/index.html.

Moseley, L. (1963). A rational design theory for the planning of buildings based on
the analysis and solution of circulation problems. The Architects' Journal, 11
November 1963, pp. 525-537.

Negroponte, N. (1967). URBAN 5: An on-line urban design partner. Ekistics, 24, pp.
289-291.

Negroponte, N. and Groisser, L. (1970). URBAN 5: a Machine that Discusses Urban
Design. In: Emerging Methods in Environmental Design and Planning (Moore,
G. T. ed., pp. 105-114. Cambridge, MA: MIT Press.

Newell, A., Shaw, J. C. and Simon, H. A. (1967). The Process of Creative Thinking. In:
Contemporary approaches to creative thinking (Gruber, H., Terrell, G. and
Wertheimer, M. eds.), pp. 63-119. New York: Atherton Press.

O'Reilly, U.-M. and Ramachandran, G. (1998). A preliminary investigation of
evolution as a form design strategy. In: Artificial Life VI (Adami, C., Belew, R.,
Kitano, H. and Taylor, C., eds.). Los Angeles.

Parmee, I. C. and Denham, M. J. (1994). The integration of adaptive search
techniques with current engineering design practice. In: Proceedings of the
Second International Conference on Adaptive Computing in Engineering
Design and Control '94, pp. 1-13. Plymouth: PEDC.

Perrella, S. ed. (1998). Hypersurface Architecture. London: John Wiley & Sons.

Pinker, S. (1997). How the mind works. 1st. New York: Norton.

 122

Prügel-Bennett, A. (2000). Modelling Evolving Populations. [WWW]
http://www.isis.ecs.soton.ac.uk/isystems/evolutionary/notes/evol/evol.html
(11 October 2002).

Radford, A. D., Gero, J. S., Rosenman, M. A. and Muthucumaru, B. (1985). Pareto
optimization as a computer-aided design tool. In: Optimization in Computer-
Aided Design (Gero, J. S., ed.). Elsevier Science Publishers B.V.

Rahim, A. (2000). Contemporary processes in architecture. London ; New York:
Wiley-Academy.

Rahim, A. (2002). Contemporary techniques in architecture. London ; New York:
Wiley-Academy.

Rittel, H. W. J. and Webber, M. M. (1973). Dilemmas in a general theory of planning.
Policy Sciences, 4, pp. 155-169.

Rosenman, M. A. (1997). The Generation of Form Using an Evolutionary Approach. In:
Evolutionary algorithms in engineering applications (Dasgupta, D. and
Michalewicz, Z. eds.), pp. 69-85. Southampton and Berlin: Springer Verlag.

Rosenman, M. A. (1997). An exploration into evolutionary models for non-routine
design. Artificial Intelligence in Engineering, 11 (3), pp. 287-293.

Rosenman, M. A. and Gero, J. S. (1999). Evolving Designs by Generating Useful
Complex Gene Structures. In: Evolutionary design by computers (Bentley, P. J.
ed., pp. 345-364. San Fransisco: Morgan Kaufmann Publishers, Inc.

Rowbottom, A. (1999). Evolutionary Art and Form. In: Evolutionary design by
computers (Bentley, P. J. ed., pp. 261-277. San Fransisco: Morgan Kaufmann
Publishers, Inc.

Rowe, P. G. (1987). Design thinking. Cambridge, Mass.: MIT Press.

 123

Rudolph, S. and Alber, R. (2002). An evolutionary approach to the inverse problem in
rule-based design representations. In: Artificial Intelligence in Design '02
Proceedings (Gero, J. S., ed.), pp. 329-350. Cambridge: Kluwer Academic
Publishers.

Shea, K. (2000). Generating rational free-form structures. In: Digital Creativity
Symposium Proceedings, pp. 119-128. London: The University of Greenwich.

Shea, K. (2003). Directed Randomness. In: Digital tectonics (Leach, N., Williams, C.
and Turnbull, D. eds.), Chichester: Wiley. Forthcoming.

Shea, K. and Cagan, J. (1997). Innovative dome design: Applying geodesic patterns
with shape annealing. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 11, pp. 379-394.

Shea, K. and Cagan, J. (1999). The design of novel roof trusses with shape annealing:
assessing the ability of a computational method in aiding structural designers
with varuing design intent. Design Studies, 20, pp. 3-23.

Shea, K. and Cagan, J. (1999). Languages and semantics of grammatical discrete
structures. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 13, pp. 241-251.

Simon, H. A. (1971). Style in design. In: Proceedings of the 2nd Annual Conference of
the Environmental Design Research Association, pp. 1-10. Pittsburgh, PA:
Carnegie Mellon University.

Simon, H. A. (1973). The Structure of Ill-structured Problems. Artificial Intelligence,
4, pp. 181-200.

Simon, H. A. (1996). The sciences of the artificial. 3rd. Cambridge, Mass.: MIT Press.

Sims, K. (1994). Evolving 3D Morphology and Behavior by Competition. In: Artificial
Life IV (Brooks, R. and Maes, P., eds.), pp. 28-39. MIT Press.

 124

Sims, K. (1994). Evolving Virtual Creatures. In: SIGGRAPH '94 Proceedings, pp. 15-
22.

Stiny, G. (1975). Pictorial and formal aspects of shape and shape grammars. Basel ;
Stuttgart: Birkhauser.

Stiny, G. (1994). Shape rules: closure, continuity, and emergence. Environment and
Planning B, 21, pp. S49-S78.

Stiny, G. (1998). New ways to look at things. Environment and Planning B,
(Anniversary Issue), pp. 68-75.

Stiny, G. and Gips, J. (1972). Shape Grammars and the Generative Specification of
Painting and Sculpture. In: Proceedings of IFIP Congress 71 (Freiman, C. V.,
ed.), pp. 1460-1465. Amsterdam: North-Holland.

Stiny, G. and March, L. (1981). Design machines. Environment and Planning B, 8, pp.
245-255.

Stiny, G. and Mitchell, W. J. (1978). The Palladian grammar. Environment and
Planning B, 5, pp. 5-18.

Tanaka, H. and Kiriyama, T. (2000). An interactive evolutionary system for generating
spatial structures. In: Artificial Intelligence in Design '00 Poster Abstracts
(Gero, J. S., ed.), pp. 59-62. Worcester, MA: Key Centre of Design Computing
and Cognition.

Tapia, M. (1999). A visual implementation of a shape grammar system. Environment
and Planning B, 26, pp. 59-73.

Tapia, M. (2000). The shape docking problem. In: Digital Creativity Symposium
Proceedings, pp. 17-26. London: The University of Greenwich.

Th'ng, R. and Davies, M. (1975). SPACES. Computer Aided Design, 7 (2), pp. 112-
118.

 125

Todd, S. and Latham, W. (1992). Evolutionary art and computers. London ; San
Diego, CA: Academic Press.

Todd, S. and Latham, W. (1999). The Mutation and Growth of Art by Computers. In:
Evolutionary design by computers (Bentley, P. J. ed., pp. 221-250. San
Fransisco: Morgan Kaufmann Publishers, Inc.

Wade, J. W. (1977). Architecture, Problems, and Purposes. New York: John Wiley &
Sons.

Wang, X., Tang, M.-X. and Frazer, J. (2000). Creative stimulator: an interface to
enhance creativity in design. In: Artificial Intelligence in Design '00 Poster
Abstracts (Gero, J. S., ed.), pp. 69-72. Worcester, MA: Key Centre of Design
Computing and Cognition.

Watanabe, M. S. (2002). Induction design: A method for evolutionary design. Basel:
Birkhäuser.

Whitehead, B. and Eldars, M. Z. (1964). An approach to the optimum layout of
single-storey buildings. The Architects' Journal, 17 June 1964, pp. 1373-
1380.

Willoughby, T. (1970). Computer aided design of a university campus. The Architects'
Journal, 25 March, pp. 753-758.

Willoughby, T., Paterson, W. and Drummond, G. (1970). Computer-aided
architectural planning. Operational Research Quarterly, 21 (1), pp. 91-98.

Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

Woodbury, R. F. (1993). A Genetic Approach to Creative Design. In: Modeling
creativity and knowledge based creative design (Gero, J. S. and Maher, M. L.
eds.), pp. 211-232. New Jersey: Lawrence Erlbaum Associates.

 126

Appendix A
Results for Tower Block Scenario

This appendix, and the following three appendices (B, C, and D) collect the detailed
results of the Shape Evolution test runs using the tower, low-rise, views and
balconies, and multiple criteria problems, as described in chapter 5. The results for
each test instance are presented on a single page and include a graph of maximum
and average scores versus generations as well as images and attributes of the three
top-scoring designs produced during each run.

For the tower problem the goal value for the building’s height is set to the maximum
value, 64 metres. Both dimensions for the footprint are set to 24 metres, equivalent
to six cubic modules. The weights for the height and the two footprint criteria are set
to 1. The genotype length is set to 48, meaning that 48 shape rules will be applied
to the initial shape. The maximum score for designs under these conditions is 4.

 127

Tower Population: 50 Set mutation rate: 0.005

 Actual mutation rate: 0.0012 Final average score: 3.4356 Time elapsed: 322 s

Champ No1

Shape code: 16 7 20 21 19 21 19 6 21 18 6 9 21 5 9 6 17 21 17 21 12 10 20 21 7 16 19 19 21
11 17 21 21 20 21 20 16 21 10 21 2 20 19 5 2 21 3 2

Score: 3.75

No of apartments: 20
No of circulation blocks: 30
Volume: 7040 m3
Total area: 1760 m2
Apartment area: 1280 m2
Circulation area: 480 m2

Height: 64 m
Footprint: 28 m × 32 m

Appeared in generation: 340

No of apartments with balconies: 1
Percentage of apartments with balconies: 5 %

Apartments with views to +i: 7
Apartments with views to -i: 12
Apartments with views to +j: 10
Apartments with views to -j: 6
Apartments with no views: 1

Champ No2

Shape code: 16 7 20 21 19 21 19 6 21 18 6 9 21 5 9 6 17 21 17 21 12 10 20 21 7 3 19 19 21
11 17 21 21 20 21 20 16 21 10 21 2 20 19 5 2 21 3 2

Score: 3.75

No of apartments: 20
No of circulation blocks: 30
Volume: 7040 m3
Total area: 1760 m2
Apartment area: 1280 m2
Circulation area: 480 m2

Height: 64 m
Footprint: 28 m × 32 m

Appeared in generation: 340

No of apartments with balconies: 4
Percentage of apartments with balconies: 20 %

Apartments with views to +i: 8
Apartments with views to -i: 11
Apartments with views to +j: 10
Apartments with views to -j: 6
Apartments with no views: 1

Champ No3

Shape code: 16 7 20 21 19 21 19 6 21 18 6 9 21 5 9 6 17 21 17 21 12 10 20 21 7 16 19 19 21
11 17 21 21 20 21 20 16 21 10 21 2 20 19 5 2 21 12 2

Score: 3.75

No of apartments: 20
No of circulation blocks: 30
Volume: 7040 m3
Total area: 1760 m2
Apartment area: 1280 m2
Circulation area: 480 m2

Height: 64 m
Footprint: 24 m × 36 m

Appeared in generation: 339

No of apartments with balconies: 1
Percentage of apartments with balconies: 5 %

Apartments with views to +i: 7
Apartments with views to -i: 12
Apartments with views to +j: 10
Apartments with views to -j: 7
Apartments with no views: 1

 128

Tower Population: 50 Set mutation rate: 0.01

 Actual mutation rate: 0.0025 Final average score: 3.0657 Time elapsed: 473 s

Champ No1

Shape code: 20 6 5 8 21 3 7 4 21 1 2 5 21 4 21 16 20 21 13 1 21 20 12 19 21 14 5 18 17 21
20 21 15 19 19 5 21 16 18 2 21 14 21 16 18 19 21 8

Score: 3.728571

No of apartments: 23
No of circulation blocks: 27
Volume: 7616 m3
Total area: 1904 m2
Apartment area: 1472 m2
Circulation area: 432 m2

Height: 60 m
Footprint: 28 m × 32 m

Appeared in generation: 45

No of apartments with balconies: 10
Percentage of apartments with balconies: 43.47826 %

Apartments with views to +i: 11
Apartments with views to -i: 11
Apartments with views to +j: 12
Apartments with views to -j: 11
Apartments with no views: 0

Champ No2

Shape code: 20 2 5 8 21 14 21 4 21 8 2 5 21 1 21 17 1 5 21 6 9 20 12 21 14 18 1 17 4 21 3 21
15 19 20 11 21 11 18 2 21 8 10 5 18 21 16 7

Score: 3.723809

No of apartments: 27
No of circulation blocks: 23
Volume: 8384 m3
Total area: 2096 m2
Apartment area: 1728 m2
Circulation area: 368 m2

Height: 56 m
Footprint: 28 m × 28 m

Appeared in generation: 88

No of apartments with balconies: 10
Percentage of apartments with balconies: 37.037037 %

Apartments with views to +i: 12
Apartments with views to -i: 15
Apartments with views to +j: 12
Apartments with views to -j: 10
Apartments with no views: 0

Champ No3

Shape code: 20 6 5 8 21 14 21 4 21 8 2 5 21 1 21 17 1 5 21 6 9 20 12 21 14 18 1 17 4 21 3 21
15 19 20 11 21 11 18 2 21 8 10 5 18 21 16 7

Score: 3.723809

No of apartments: 27
No of circulation blocks: 23
Volume: 8384 m3
Total area: 2096 m2
Apartment area: 1728 m2
Circulation area: 368 m2

Height: 56 m
Footprint: 28 m × 28 m

Appeared in generation: 87

No of apartments with balconies: 10
Percentage of apartments with balconies: 37.037037 %

Apartments with views to +i: 12
Apartments with views to -i: 14
Apartments with views to +j: 11
Apartments with views to -j: 11
Apartments with no views: 0

 129

Tower Population: 50 Set mutation rate: 0.05

 Actual mutation rate: 0.0126 Final average score: 2.8472 Time elapsed: 873 s

Champ No1

Shape code: 20 14 17 20 16 21 19 18 7 21 17 15 5 21 4 3 21 18 21 5 21 12 19 3 21 1 20 17
17 4 21 21 14 8 21 2 21 2 8 21 4 14 21 18 2 4 21 13

Score: 3.733333

No of apartments: 22
No of circulation blocks: 28
Volume: 7424 m3
Total area: 1856 m2
Apartment area: 1408 m2
Circulation area: 448 m2

Height: 64 m
Footprint: 32 m × 32 m

Appeared in generation: 81

No of apartments with balconies: 8
Percentage of apartments with balconies: 36.363636 %

Apartments with views to +i: 11
Apartments with views to -i: 11
Apartments with views to +j: 11
Apartments with views to -j: 11
Apartments with no views: 0

Champ No2

Shape code: 1 4 19 11 2 21 11 8 2 21 17 15 11 21 17 13 21 18 21 5 21 12 19 3 21 1 20 17 17
4 21 21 14 8 21 2 21 2 8 21 4 14 21 18 2 4 21 13

Score: 3.733333

No of apartments: 25
No of circulation blocks: 25
Volume: 8000 m3
Total area: 2000 m2
Apartment area: 1600 m2
Circulation area: 400 m2

Height: 64 m
Footprint: 32 m × 32 m

Appeared in generation: 80

No of apartments with balconies: 9
Percentage of apartments with balconies: 36 %

Apartments with views to +i: 12
Apartments with views to -i: 12
Apartments with views to +j: 12
Apartments with views to -j: 9
Apartments with no views: 0

Champ No3

Shape code: 20 21 21 20 20 21 13 8 2 21 17 9 5 21 4 6 21 3 18 12 21 12 2 3 21 1 20 6 17 4
21 1 14 17 21 7 21 10 8 21 19 14 21 18 2 4 21 4

Score: 3.733333

No of apartments: 24
No of circulation blocks: 26
Volume: 7808 m3
Total area: 1952 m2
Apartment area: 1536 m2
Circulation area: 416 m2

Height: 64 m
Footprint: 32 m × 32 m

Appeared in generation: 64

No of apartments with balconies: 12
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 11
Apartments with views to -i: 13
Apartments with views to +j: 7
Apartments with views to -j: 13
Apartments with no views: 0

 130

Tower Population: 50 Set mutation rate: 0.1

 Actual mutation rate: 0.0269 Final average score: 3.0464 Time elapsed: 1267 s

Champ No1

Shape code: 5 21 21 11 21 17 16 7 21 21 12 7 21 13 7 21 18 19 1 21 13 1 21 13 9 21 17 16
21 14 16 21 19 11 9 21 1 3 17 21 13 17 22 22 16 20 21 12

Score: 3.933333

No of apartments: 23
No of circulation blocks: 27
Volume: 7616 m3
Total area: 1904 m2
Apartment area: 1472 m2
Circulation area: 432 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 94

No of apartments with balconies: 6
Percentage of apartments with balconies: 26.086956 %

Apartments with views to +i: 8
Apartments with views to -i: 13
Apartments with views to +j: 12
Apartments with views to -j: 13
Apartments with no views: 0

Champ No2

Shape code: 15 21 11 17 21 17 16 7 21 13 19 21 6 1 20 21 21 8 2 21 13 8 21 13 9 21 2 16 21
14 16 21 19 11 15 21 1 17 17 21 2 17 21 20 22 20 21 19

Score: 3.933333

No of apartments: 21
No of circulation blocks: 29
Volume: 7232 m3
Total area: 1808 m2
Apartment area: 1344 m2
Circulation area: 464 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 87

No of apartments with balconies: 8
Percentage of apartments with balconies: 38.095238 %

Apartments with views to +i: 9
Apartments with views to -i: 13
Apartments with views to +j: 13
Apartments with views to -j: 9
Apartments with no views: 0

Champ No3

Shape code: 1 21 17 20 21 17 17 7 21 21 17 21 21 18 21 19 19 19 2 21 13 8 21 13 9 21 2 16
21 14 16 21 19 11 15 21 1 17 17 21 2 17 8 20 22 20 21 19

Score: 3.933333

No of apartments: 16
No of circulation blocks: 34
Volume: 6272 m3
Total area: 1568 m2
Apartment area: 1024 m2
Circulation area: 544 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 85

No of apartments with balconies: 9
Percentage of apartments with balconies: 56.25 %

Apartments with views to +i: 7
Apartments with views to -i: 10
Apartments with views to +j: 9
Apartments with views to -j: 7
Apartments with no views: 0

 131

Tower Population: 50 Set mutation rate: 0.5

 Actual mutation rate: 0.1439 Final average score: 3.3819 Time elapsed: 2839 s

Champ No1

Shape code: 20 17 21 12 18 10 21 12 14 21 3 21 4 21 19 20 21 13 21 19 5 9 21 5 21 11 17 8
18 7 21 12 19 15 20 21 18 12 21 5 19 19 18 21 17 18 21 13

Score: 4

No of apartments: 18
No of circulation blocks: 32
Volume: 6656 m3
Total area: 1664 m2
Apartment area: 1152 m2
Circulation area: 512 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 320

No of apartments with balconies: 6
Percentage of apartments with balconies: 33.333336 %

Apartments with views to +i: 8
Apartments with views to -i: 9
Apartments with views to +j: 10
Apartments with views to -j: 11
Apartments with no views: 0

Champ No2

Shape code: 10 4 21 7 3 21 3 9 21 21 14 21 1 17 17 20 19 21 19 15 5 21 10 17 20 21 18 18
21 21 7 17 12 3 21 11 19 21 3 9 21 16 21 19 14 22 15 6

Score: 3.933333

No of apartments: 21
No of circulation blocks: 29
Volume: 7232 m3
Total area: 1808 m2
Apartment area: 1344 m2
Circulation area: 464 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 433

No of apartments with balconies: 9
Percentage of apartments with balconies: 42.857143 %

Apartments with views to +i: 11
Apartments with views to -i: 9
Apartments with views to +j: 9
Apartments with views to -j: 12
Apartments with no views: 0

Champ No3

Shape code: 12 20 2 21 17 17 7 3 21 3 9 21 18 7 4 21 9 13 21 3 19 21 12 19 20 17 21 6 21 2
17 3 21 7 20 21 21 14 18 4 21 6 16 21 13 21 17 20

Score: 3.933333

No of apartments: 21
No of circulation blocks: 29
Volume: 7232 m3
Total area: 1808 m2
Apartment area: 1344 m2
Circulation area: 464 m2

Height: 64 m
Footprint: 24 m × 28 m

Appeared in generation: 415

No of apartments with balconies: 7
Percentage of apartments with balconies: 33.333336 %

Apartments with views to +i: 12
Apartments with views to -i: 10
Apartments with views to +j: 8
Apartments with views to -j: 13
Apartments with no views: 0

 132

Tower Population: 200 Set mutation rate: 0.005

 Actual mutation rate: 0.0009 Final average score: 2.8636 Time elapsed: 4821 s

Champ No1

Shape code: 17 16 7 21 12 3 21 20 2 3 12 21 11 8 21 18 21 6 4 9 20 21 5 2 21 1 17 21 4 6 20
21 15 21 19 10 21 8 21 10 4 21 3 18 21 10 4 20

Score: 3.8

No of apartments: 25
No of circulation blocks: 25
Volume: 8000 m3
Total area: 2000 m2
Apartment area: 1600 m2
Circulation area: 400 m2

Height: 64 m
Footprint: 28 m × 32 m

Appeared in generation: 35

No of apartments with balconies: 11
Percentage of apartments with balconies: 44 %

Apartments with views to +i: 13
Apartments with views to -i: 11
Apartments with views to +j: 14
Apartments with views to -j: 8
Apartments with no views: 0

Champ No2

Shape code: 17 16 7 21 12 3 21 20 2 3 12 21 11 8 21 18 21 6 4 9 20 21 5 2 21 1 17 21 4 6 20
21 15 21 19 10 21 8 21 10 4 21 3 18 21 10 4 20

Score: 3.8

No of apartments: 25
No of circulation blocks: 25
Volume: 8000 m3
Total area: 1760 m2
Apartment area: 2000 m2
Circulation area: 400 m2

Height: 64 m
Footprint: 28 m × 32 m

Appeared in generation: 35

No of apartments with balconies: 13
Percentage of apartments with balconies: 52 %

Apartments with views to +i: 13
Apartments with views to -i: 12
Apartments with views to +j: 12
Apartments with views to -j: 10
Apartments with no views: 0

Champ No3

Shape code: 7 20 19 13 21 2 16 3 18 21 5 21 11 8 21 18 21 6 4 9 20 21 5 2 21 1 17 21 4 6 20
21 15 21 19 10 21 8 21 10 4 21 3 18 21 10 4 20

Score: 3.8

No of apartments: 24
No of circulation blocks: 26
Volume: 7808 m3
Total area: 1952 m2
Apartment area: 1536 m2
Circulation area: 416 m2

Height: 64 m
Footprint: 28 m × 32 m

Appeared in generation: 34

No of apartments with balconies: 12
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 12
Apartments with views to -i: 12
Apartments with views to +j: 13
Apartments with views to -j: 8
Apartments with no views: 0

 133

Tower Population: 200 Set mutation rate: 0.01

 Actual mutation rate: 0.0025 Final average score: 3.5829 Time elapsed: 4434 s

Champ No1

Shape code: 21 2 1 11 21 18 17 18 21 4 21 21 15 4 3 21 20 10 20 3 16 21 8 7 21 19 18 8 21
2 17 21 3 17 7 17 20 21 21 18 19 14 18 21 20 21 7 11

Score: 4

No of apartments: 19
No of circulation blocks: 31
Volume: 6848 m3
Total area: 1712 m2
Apartment area: 1216 m2
Circulation area: 496 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 450

No of apartments with balconies: 3
Percentage of apartments with balconies: 15.789473 %

Apartments with views to +i: 10
Apartments with views to -i: 4
Apartments with views to +j: 8
Apartments with views to -j: 8
Apartments with no views: 0

Champ No2

Shape code: 19 2 1 11 21 5 17 18 21 13 21 21 2 12 3 21 13 21 18 9 4 21 12 7 21 13 18 19 21
20 21 21 6 17 13 17 18 9 21 4 19 14 18 21 20 21 7 11

Score: 3.933333

No of apartments: 21
No of circulation blocks: 29
Volume: 7232 m3
Total area: 1808 m2
Apartment area: 1344 m2
Circulation area: 464 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 478

No of apartments with balconies: 5
Percentage of apartments with balconies: 23.809525 %

Apartments with views to +i: 7
Apartments with views to -i: 10
Apartments with views to +j: 9
Apartments with views to -j: 13
Apartments with no views: 0

Champ No3

Shape code: 3 21 20 2 21 3 19 7 21 5 17 21 2 12 21 3 15 21 8 19 14 21 12 7 21 14 5 8 21 2 3
21 18 21 13 21 18 9 21 17 21 20 4 22 22 12 20 19

Score: 3.933333

No of apartments: 22
No of circulation blocks: 28
Volume: 7424 m3
Total area: 1856 m2
Apartment area: 1408 m2
Circulation area: 448 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 283

No of apartments with balconies: 10
Percentage of apartments with balconies: 45.454548 %

Apartments with views to +i: 12
Apartments with views to -i: 8
Apartments with views to +j: 12
Apartments with views to -j: 10
Apartments with no views: 0

 134

Tower Population: 200 Set mutation rate: 0.05

 Actual mutation rate: 0.0013 Final average score: 3.1935 Time elapsed: 4962 s

Champ No1

Shape code: 16 7 20 21 19 21 19 6 21 18 6 9 21 5 9 6 17 21 17 21 12 10 20 21 7 16 19 19
21 11 17 21 21 20 21 20 16 21 10 21 2 20 19 5 2 21 3 2

Score: 3.933333

No of apartments: 16
No of circulation blocks: 34
Volume: 6272 m3
Total area: 1568 m2
Apartment area: 1024 m2
Circulation area: 544 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 480

No of apartments with balconies: 5
Percentage of apartments with balconies: 31.25 %

Apartments with views to +i: 8
Apartments with views to -i: 10
Apartments with views to +j: 7
Apartments with views to -j: 11
Apartments with no views: 0

Champ No2

Shape code: 21 4 21 13 21 20 21 17 17 3 17 21 18 14 21 20 3 21 21 2 18 16 21 8 21 4 21
21 7 19 13 22 19 1 19 19 22 22 16 20 21 17 5 21 21 21 10 21

Score: 3.933333

No of apartments: 15
No of circulation blocks: 35
Volume: 6080m3
Total area: 1520 m2
Apartment area: 960 m2
Circulation area: 560 m2

Height: 64 m
Footprint: 24 m × 28 m

Appeared in generation: 460

No of apartments with balconies: 4
Percentage of apartments with balconies: 26.666668 %

Apartments with views to +i: 10
Apartments with views to -i: 6
Apartments with views to +j: 10
Apartments with views to -j: 6
Apartments with no views: 0

Champ No3

Shape code: 21 21 21 20 19 21 21 18 8 18 21 18 15 21 17 21 13 21 17 21 12 21 19 21 21
15 21 15 19 19 22 22 15 22 19 22 17 22 6 9 20 20 20 21 17 15 20 22

Score: 3.933333

No of apartments: 10
No of circulation blocks: 40
Volume: 5120 m3
Total area: 1280 m2
Apartment area: 640 m2
Circulation area: 640 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 369

No of apartments with balconies: 2
Percentage of apartments with balconies: 20 %

Apartments with views to +i: 6
Apartments with views to -i: 4
Apartments with views to +j: 7
Apartments with views to -j: 8
Apartments with no views: 0

 135

Tower Population: 200 Set mutation rate: 0.1

 Actual mutation rate: 0.0291 Final average score: 3.4873 Time elapsed: 5455 s

Champ No1

Shape code: 19 18 21 9 21 21 6 20 12 21 16 14 21 21 5 21 16 21 21 17 11 21 20 19 20 10
20 21 13 18 16 18 19 18 10 21 9 17 17 20 21 21 3 19 9 22 2 1

Score: 3.933333

No of apartments: 17
No of circulation blocks: 33
Volume: 6464 m3
Total area: 1616 m2
Apartment area: 1088 m2
Circulation area: 528 m2

Height: 64 m
Footprint: 24 m × 28 m

Appeared in generation: 490

No of apartments with balconies: 7
Percentage of apartments with balconies: 41.176472 %

Apartments with views to +i: 6
Apartments with views to -i: 11
Apartments with views to +j: 11
Apartments with views to -j: 8
Apartments with no views: 0

Champ No2

Shape code: 8 21 17 18 2 4 21 14 17 21 10 21 9 21 18 6 21 21 17 15 11 21 9 19 20 14 4 21
4 21 1 2 4 21 14 18 9 21 5 1 21 21 12 19 22 22 19 18

Score: 3.933333

No of apartments: 21
No of circulation blocks: 29
Volume: 7232 m3
Total area: 1808 m2
Apartment area: 1344 m2
Circulation area: 464 m2

Height: 64 m
Footprint: 24 m × 28 m

Appeared in generation: 458

No of apartments with balconies: 10
Percentage of apartments with balconies: 47.619049 %

Apartments with views to +i: 10
Apartments with views to -i: 12
Apartments with views to +j: 6
Apartments with views to -j: 12
Apartments with no views: 0

Champ No3

Shape code: 17 3 18 4 21 19 6 21 15 21 4 10 21 19 5 19 1 21 17 17 21 12 20 21 14 18 21 11
21 17 22 9 17 21 12 21 19 18 1 21 21 9 4 21 20 21 1 11

Score: 3.933333

No of apartments: 18
No of circulation blocks: 32
Volume: 6656 m3
Total area: 1664 m2
Apartment area: 1152 m2
Circulation area: 512 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 455

No of apartments with balconies: 3
Percentage of apartments with balconies: 16.666668 %

Apartments with views to +i: 8
Apartments with views to -i: 11
Apartments with views to +j: 7
Apartments with views to -j: 12
Apartments with no views: 0

 136

Tower Population: 200 Set mutation rate: 0.5

 Actual mutation rate: 0.1452 Final average score: 3.4731 Time elapsed: 9134 s

Champ No1

Shape code: 4 20 21 17 20 21 17 15 21 18 4 6 9 21 21 21 6 1 5 21 10 21 17 16 20 20 20 21
18 8 7 19 21 1 19 18 1 21 1 5 21 17 17 17 8 20 21 21

Score: 3.941176

No of apartments: 17
No of circulation blocks: 33
Volume: 6464 m3
Total area: 1616 m2
Apartment area: 1088 m2
Circulation area: 528 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 425

No of apartments with balconies: 3
Percentage of apartments with balconies: 17.647058 %

Apartments with views to +i: 7
Apartments with views to -i: 8
Apartments with views to +j: 7
Apartments with views to -j: 8
Apartments with no views: 1

Champ No2

Shape code: 17 21 6 9 17 20 19 22 17 17 16 21 12 21 20 8 14 21 5 8 21 18 15 21 18 7 21 13
21 6 21 21 1 6 21 9 5 21 1 11 21 1 21 6 21 1 4 3

Score: 3.933333

No of apartments: 23
No of circulation blocks: 27
Volume: 7616 m3
Total area: 1904 m2
Apartment area: 1472 m2
Circulation area: 432 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 500

No of apartments with balconies: 9
Percentage of apartments with balconies: 39.130436 %

Apartments with views to +i: 8
Apartments with views to -i: 15
Apartments with views to +j: 9
Apartments with views to -j: 14
Apartments with no views: 0

Champ No3

Shape code: 10 16 18 21 21 4 6 21 20 6 16 21 20 11 21 19 11 2 21 21 11 8 18 21 13 8 21 8
19 21 8 10 21 2 20 20 22 17 18 21 20 21 21 9 21 7 20 17

Score: 3.933333

No of apartments: 19
No of circulation blocks: 31
Volume: 6848 m3
Total area: 1712 m2
Apartment area: 1216 m2
Circulation area: 496 m2

Height: 64 m
Footprint: 24 m × 28 m

Appeared in generation: 489

No of apartments with balconies: 9
Percentage of apartments with balconies: 47.368423 %

Apartments with views to +i: 11
Apartments with views to -i: 8
Apartments with views to +j: 11
Apartments with views to -j: 7
Apartments with no views: 0

 137

Tower Population: 500 Set mutation rate: 0.005

 Actual mutation rate: 0.0012 Final average score: 3.6265 Time elapsed: 10928 s

Champ No1

Shape code: 11 15 17 17 21 21 4 6 20 21 3 2 21 7 13 8 19 21 3 16 2 21 21 12 14 21 17 20
8 21 11 19 18 21 9 19 21 17 18 15 21 11 7 21 21 9 19 22

Score: 3.933333

No of apartments: 21
No of circulation blocks: 29
Volume: 7232 m3
Total area: 1808 m2
Apartment area: 1344 m2
Circulation area: 464 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 500

No of apartments with balconies: 6
Percentage of apartments with balconies: 28.57143 %

Apartments with views to +i: 12
Apartments with views to -i: 7
Apartments with views to +j: 9
Apartments with views to -j: 12
Apartments with no views: 0

Champ No2

Shape code: 11 15 17 17 21 9 4 6 21 9 21 7 21 7 20 8 19 21 3 8 2 21 21 16 10 21 18 17 16
21 16 3 21 21 9 19 21 5 6 15 21 11 7 21 4 9 19 22

Score: 3.933333

No of apartments: 25
No of circulation blocks: 25
Volume: 8000 m3
Total area: 2000 m2
Apartment area: 1600 m2
Circulation area: 400 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 500

No of apartments with balconies: 10
Percentage of apartments with balconies: 40 %

Apartments with views to +i: 14
Apartments with views to -i: 8
Apartments with views to +j: 12
Apartments with views to -j: 10
Apartments with no views: 0

Champ No3

Shape code: 18 9 19 21 21 15 4 6 20 21 2 8 21 7 11 21 21 17 3 16 7 21 21 12 14 21 8 19 7
21 11 1 21 19 2 18 21 14 17 9 21 12 7 21 4 9 19 14

Score: 3.933333

No of apartments: 25
No of circulation blocks: 25
Volume: 8000 m3
Total area: 2000 m2
Apartment area: 1600 m2
Circulation area: 400 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 500

No of apartments with balconies: 11
Percentage of apartments with balconies: 44 %

Apartments with views to +i: 11
Apartments with views to -i: 8
Apartments with views to +j: 8
Apartments with views to -j: 15
Apartments with no views: 0

 138

Tower Population: 500 Set mutation rate: 0.01

 Actual mutation rate: 0.0025 Final average score: 3.5156 Time elapsed: 10787 s

Champ No1

Shape code: 11 18 21 11 21 17 21 12 21 7 21 13 9 21 13 21 7 11 21 8 18 19 19 21 20 16 10
21 17 1 21 20 17 22 11 18 17 21 12 19 21 7 17 21 2 12 21 14

Score: 4

No of apartments: 19
No of circulation blocks: 31
Volume: 6848 m3
Total area: 1712 m2
Apartment area: 1216 m2
Circulation area: 496 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 498

No of apartments with balconies: 8
Percentage of apartments with balconies: 42.105263 %

Apartments with views to +i: 13
Apartments with views to -i: 9
Apartments with views to +j: 10
Apartments with views to -j: 13
Apartments with no views: 0

Champ No2

Shape code: 6 17 21 21 20 21 21 6 12 7 21 12 7 3 19 21 7 11 21 13 19 19 1 21 20 16 10 21
17 15 21 20 17 22 11 18 8 21 12 18 21 21 9 21 14 18 17 21

Score: 4

No of apartments: 19
No of circulation blocks: 31
Volume: 6848 m3
Total area: 1712 m2
Apartment area: 1216 m2
Circulation area: 496 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 419

No of apartments with balconies: 5
Percentage of apartments with balconies: 26.31579 %

Apartments with views to +i: 8
Apartments with views to -i: 7
Apartments with views to +j: 7
Apartments with views to -j: 12
Apartments with no views: 0

Champ No3

Shape code: 16 20 21 11 9 21 13 2 21 10 21 10 16 21 11 1 2 21 21 8 21 18 19 21 20 16 10
21 17 15 21 20 17 22 3 18 16 21 8 18 21 7 12 21 11 7 21 15

Score: 4

No of apartments: 23
No of circulation blocks: 27
Volume: 7616 m3
Total area: 1904 m2
Apartment area: 1472 m2
Circulation area: 432 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 339

No of apartments with balconies: 8
Percentage of apartments with balconies: 34.782608 %

Apartments with views to +i: 14
Apartments with views to -i: 7
Apartments with views to +j: 15
Apartments with views to -j: 8
Apartments with no views: 0

 139

Tower Population: 500 Set mutation rate: 0.05

 Actual mutation rate: 0.0123 Final average score: 3.1846 Time elapsed: 12120 s

Champ No1

Shape code: 8 2 21 13 8 21 21 3 12 21 19 14 20 21 8 21 11 18 18 21 10 21 15 5 21 20 16
10 21 10 8 21 19 5 18 10 17 21 1 19 21 14 12 18 1 21 18 4

Score: 4

No of apartments: 23
No of circulation blocks: 27
Volume: 7616 m3
Total area: 1904 m2
Apartment area: 1472 m2
Circulation area: 432 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 459

No of apartments with balconies: 7
Percentage of apartments with balconies: 30.434782 %

Apartments with views to +i: 13
Apartments with views to -i: 13
Apartments with views to +j: 14
Apartments with views to -j: 9
Apartments with no views: 0

Champ No2

Shape code: 5 17 21 13 15 21 18 17 21 19 19 14 20 21 3 21 11 18 18 21 10 21 15 5 21 20
16 10 21 10 8 21 19 5 18 10 17 21 1 19 21 21 12 18 1 21 18 4

Score: 3.933333

No of apartments: 19
No of circulation blocks: 31
Volume: 6848 m3
Total area: 1712 m2
Apartment area: 1216 m2
Circulation area: 496 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 462

No of apartments with balconies: 5
Percentage of apartments with balconies: 26.31579 %

Apartments with views to +i: 11
Apartments with views to -i: 11
Apartments with views to +j: 12
Apartments with views to -j: 7
Apartments with no views: 0

Champ No3

Shape code: 11 17 21 13 15 21 18 17 21 19 19 14 20 21 3 21 11 18 18 21 10 21 15 5 21 20
16 10 21 10 8 21 19 5 18 10 17 21 1 19 21 21 12 18 1 21 18 4

Score: 3.933333

No of apartments: 19
No of circulation blocks: 31
Volume: 6848 m3
Total area: 1712 m2
Apartment area: 1216 m2
Circulation area: 496 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 461

No of apartments with balconies: 5
Percentage of apartments with balconies: 26.31579 %

Apartments with views to +i: 12
Apartments with views to -i: 10
Apartments with views to +j: 12
Apartments with views to -j: 7
Apartments with no views: 0

 140

Tower Population: 500 Set mutation rate: 0.1

 Actual mutation rate: 0.0287 Final average score: 3.4256 Time elapsed: 12113 s

Champ No1

Shape code: 18 16 21 21 21 14 17 21 4 14 21 1 20 17 21 21 12 20 21 13 8 18 21 8 20 21 10
17 21 18 18 21 4 6 18 22 19 19 21 20 21 15 17 13 21 4 18 18

Score: 4

No of apartments: 15
No of circulation blocks: 35
Volume: 6080 m3
Total area: 1760 m2
Apartment area: 1520 m2
Circulation area: 560 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 390

No of apartments with balconies: 5
Percentage of apartments with balconies: 33.333336 %

Apartments with views to +i: 11
Apartments with views to -i: 7
Apartments with views to +j: 5
Apartments with views to -j: 10
Apartments with no views: 0

Champ No2

Shape code: 9 17 20 21 14 8 21 15 19 19 21 5 21 17 21 2 11 21 21 5 18 21 10 17 12 21 11
21 20 2 12 21 7 3 8 19 21 9 13 21 14 21 17 3 16 18 19 15

Score: 4

No of apartments: 22
No of circulation blocks: 28
Volume: 7424m3
Total area: 1856 m2
Apartment area: 1408 m2
Circulation area: 448 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 198

No of apartments with balconies: 10
Percentage of apartments with balconies: 45.454548 %

Apartments with views to +i: 10
Apartments with views to -i: 10
Apartments with views to +j: 14
Apartments with views to -j:11
Apartments with no views: 0

Champ No3

Shape code: 6 7 20 21 17 4 22 20 21 19 21 11 21 18 18 14 21 12 21 3 4 15 21 7 20 21 15 13
21 17 15 21 7 3 19 19 21 9 4 21 21 11 21 14 17 21 6 18

Score: 4

No of apartments: 20
No of circulation blocks: 30
Volume: 7040 m3
Total area: 1760 m2
Apartment area: 1280 m2
Circulation area: 480 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 184

No of apartments with balconies: 5
Percentage of apartments with balconies: 25 %

Apartments with views to +i: 15
Apartments with views to -i: 7
Apartments with views to +j: 7
Apartments with views to -j: 14
Apartments with no views: 0

 141

Tower Population: 500 Set mutation rate: 0.5

 Actual mutation rate: 0.1432 Final average score: 3.4344 Time elapsed: 14043 s

Champ No1

Shape code: 17 21 13 18 15 21 4 15 20 21 2 8 5 18 21 12 21 4 15 21 1 4 10 21 6 17 16 21
13 9 17 21 20 8 21 7 3 16 21 8 7 21 3 12 21 21 16 2

Score: 4

No of apartments: 27
No of circulation blocks: 23
Volume: 8384 m3
Total area: 2096 m2
Apartment area: 1728 m2
Circulation area: 368 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 428

No of apartments with balconies: 8
Percentage of apartments with balconies: 29.629629 %

Apartments with views to +i: 14
Apartments with views to -i: 11
Apartments with views to +j: 13
Apartments with views to -j: 10
Apartments with no views: 0

Champ No2

Shape code: 19 19 20 21 17 1 5 21 17 21 14 5 1 21 16 21 20 20 17 16 21 11 9 21 16 2 21
18 8 7 21 2 8 11 21 18 12 19 14 21 10 17 21 3 21 16 6 21

Score: 4

No of apartments: 22
No of circulation blocks: 28
Volume: 7424 m3
Total area: 1856 m2
Apartment area: 1408 m2
Circulation area: 448 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 419

No of apartments with balconies: 11
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 11
Apartments with views to -i: 12
Apartments with views to +j: 12
Apartments with views to -j: 8
Apartments with no views: 0

Champ No3

Shape code: 5 18 19 18 21 1 10 21 16 21 1 21 17 5 21 21 5 9 21 13 21 14 21 1 20 13 21
10 20 17 13 17 18 19 21 14 8 21 19 10 5 21 21 19 5 18 1 6

Score: 4

No of apartments: 21
No of circulation blocks: 29
Volume: 7232 m3
Total area: 1808 m2
Apartment area: 1344 m2
Circulation area: 464 m2

Height: 64 m
Footprint: 24 m × 24 m

Appeared in generation: 225

No of apartments with balconies: 6
Percentage of apartments with balconies: 28.57143 %

Apartments with views to +i: 4
Apartments with views to -i: 17
Apartments with views to +j: 14
Apartments with views to -j: 10
Apartments with no views: 0

 142

Appendix B
Results for Low-Rise Block

Scenario

For the low-rise block the goal height is set to 16 metres, equivalent to four storeys.
The footprint of the building is left unconstrained. Instead, to avoid unnecessary
spreading of the building horizontally, the goal relating to the percentage of
apartment modules in the design was set to the maximum value, 80%. The effect of
this is that designs with a more efficient use of circulation will be preferred. The
genotype length is 24. The weights for height and percentage of apartments are set
to 1, making the highest possible score less than 3 (since the maximum value for the
percentage of apartments can only be approached asymptotically, as explained in
section 4.4.1).

 143

Low-Rise Population: 50 Set mutation rate: 0.005

 Actual mutation rate: 0.0015 Final average score: 2.1529 Time elapsed: 651 s

Champ No1

Shape code: 11 8 2 21 13 8 19 10 21 19 9 6 5 21 7 17 4 1 3 21 11 9 17 17

Score: 2.646616

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960 m2
Circulation area: 176 m2

Height: 24 m
Footprint: 32 m × 28 m

Appeared in generation: 5

No of apartments with balconies: 2
Percentage of apartments with balconies: 13.333334 %

Apartments with views to +i: 5
Apartments with views to -i: 5
Apartments with views to +j: 6
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 5 2 1 21 13 8 19 10 21 19 9 6 5 21 7 17 4 1 3 21 11 9 17 17

Score: 2.646616

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960m2
Circulation area: 176 m2

Height: 24 m
Footprint: 36 m × 28 m

Appeared in generation: 4

No of apartments with balconies: 2
Percentage of apartments with balconies: 13.333334 %

Apartments with views to +i: 3
Apartments with views to -i: 6
Apartments with views to +j: 7
Apartments with views to -j: 5
Apartments with no views: 0

Champ No3

Shape code: 10 8 5 18 18 18 2 18 8 18 18 7 21 6 1 20 17 20 13 17 21 14 5 1

Score: 2.631579

No of apartments: 12
No of circulation blocks: 14
Volume: 3968 m3
Total area: 992 m2
Apartment area: 768 m2
Circulation area: 224 m2

Height: 24 m
Footprint: 36 m × 36 m

Appeared in generation: 339

No of apartments with balconies: 4
Percentage of apartments with balconies: 33.333336 %

Apartments with views to +i: 2
Apartments with views to -i: 5
Apartments with views to +j: 4
Apartments with views to -j: 5
Apartments with no views: 0

 144

Low-Rise Population: 50 Set mutation rate: 0.01

 Actual mutation rate: 0.0028 Final average score: 2.2292 Time elapsed: 781 s

Champ No1

Shape code: 8 7 13 19 19 6 21 12 18 18 8 6 22 15 19 19 10 20 21 10 21 1 3 4

Score: 2.684211

No of apartments: 13
No of circulation blocks: 13
Volume: 4160 m3
Total area: 1040 m2
Apartment area: 832 m2
Circulation area: 208 m2

Height: 16 m
Footprint: 40 m × 36 m

Appeared in generation: 5

No of apartments with balconies: 4
Percentage of apartments with balconies: 30.769232 %

Apartments with views to +i: 4
Apartments with views to -i: 4
Apartments with views to +j: 4
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 4 2 3 1 21 5 21 13 9 21 11 2 8 18 18 22 22 8 19 6 15 21 14 1

Score: 2.651378

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960 m2
Circulation area: 176 m2

Height: 20 m
Footprint: 28 m × 36 m

Appeared in generation: 6

No of apartments with balconies: 6
Percentage of apartments with balconies: 40 %

Apartments with views to +i: 4
Apartments with views to -i: 5
Apartments with views to +j: 4
Apartments with views to -j: 4
Apartments with no views: 1

Champ No3

Shape code: 7 3 17 4 1 21 16 3 19 2 21 5 15 17 8 21 8 21 8 7 6 20 20 4

Score: 2.646616

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960 m2
Circulation area: 176 m2

Height: 24 m
Footprint: 32 m × 36 m

Appeared in generation: 15

No of apartments with balconies: 3
Percentage of apartments with balconies: 20 %

Apartments with views to +i: 6
Apartments with views to -i: 3
Apartments with views to +j: 5
Apartments with views to -j: 4
Apartments with no views: 0

 145

Low-Rise Population: 50 Set mutation rate: 0.05

 Actual mutation rate: 0.015 Final average score: 2.2798 Time elapsed: 935 s

Champ No1

Shape code: 3 4 2 1 21 3 1 2 4 21 16 10 21 2 5 8 21 18 10 4 18 18 9 17

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 28 m × 32 m

Appeared in generation: 35

No of apartments with balconies: 5
Percentage of apartments with balconies: 31.25 %

Apartments with views to +i: 5
Apartments with views to -i: 7
Apartments with views to +j: 7
Apartments with views to -j: 3
Apartments with no views: 0

Champ No2

Shape code: 3 4 2 1 21 3 1 2 4 21 16 10 21 2 5 8 21 18 10 18 18 18 4 15

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 28 m × 36 m

Appeared in generation: 30

No of apartments with balconies: 4
Percentage of apartments with balconies: 25 %

Apartments with views to +i: 6
Apartments with views to -i: 6
Apartments with views to +j: 7
Apartments with views to -j: 3
Apartments with no views: 0

Champ No3

Shape code: 3 4 2 1 21 3 1 2 4 21 16 10 21 2 3 16 21 18 10 18 18 18 4 15

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 28 m × 36 m

Appeared in generation: 28

No of apartments with balconies: 3
Percentage of apartments with balconies: 18.75 %

Apartments with views to +i: 6
Apartments with views to -i: 5
Apartments with views to +j: 7
Apartments with views to -j: 3
Apartments with no views: 0

 146

Low-Rise Population: 50 Set mutation rate: 0.1

 Actual mutation rate: 0.032 Final average score: 2.1411 Time elapsed: 1089 s

Champ No1

Shape code: 10 8 20 4 3 21 1 4 20 10 20 3 21 2 20 17 17 8 21 3 4 18 10 1

Score: 2.665414

No of apartments: 14
No of circulation blocks: 12
Volume: 4352 m3
Total area: 1088 m2
Apartment area: 896 m2
Circulation area: 192 m2

Height: 20 m
Footprint: 36 m × 44 m

Appeared in generation: 18

No of apartments with balconies: 3
Percentage of apartments with balconies: 21.428572 %

Apartments with views to +i: 5
Apartments with views to -i: 4
Apartments with views to +j: 5
Apartments with views to -j: 2
Apartments with no views: 0

Champ No2

Shape code: 10 8 20 4 3 21 1 4 20 10 20 3 21 2 17 17 8 20 6 21 13 18 2 1

Score: 2.665414

No of apartments: 14
No of circulation blocks: 12
Volume: 4352 m3
Total area: 1088 m2
Apartment area: 896 m2
Circulation area: 192 m2

Height: 20 m
Footprint: 36 m × 44 m

Appeared in generation: 12

No of apartments with balconies: 4
Percentage of apartments with balconies: 28.57143 %

Apartments with views to +i: 4
Apartments with views to -i: 6
Apartments with views to +j: 5
Apartments with views to -j: 2
Apartments with no views: 0

Champ No3

Shape code: 5 6 18 9 21 17 8 11 7 21 3 4 18 10 8 18 21 5 7 8 19 19 6 20

Score: 2.665414

No of apartments: 14
No of circulation blocks: 12
Volume: 4352 m3
Total area: 1088 m2
Apartment area: 896 m2
Circulation area: 192 m2

Height: 20 m
Footprint: 28 m × 40 m

Appeared in generation: 2

No of apartments with balconies: 2
Percentage of apartments with balconies: 14.285715 %

Apartments with views to +i: 5
Apartments with views to -i: 4
Apartments with views to +j: 4
Apartments with views to -j: 3
Apartments with no views: 0

 147

Low-Rise Population: 50 Set mutation rate: 0.5

 Actual mutation rate: 0.1549 Final average score: 2.1999 Time elapsed: 1865 s

Champ No1

Shape code: 7 20 21 21 1 2 20 13 22 2 13 22 20 12 14 20 20 5 21 6 4 7 21 11

Score: 2.684211

No of apartments: 13
No of circulation blocks: 13
Volume: 4160 m3
Total area: 1040 m2
Apartment area: 832 m2
Circulation area: 208 m2

Height: 16 m
Footprint: 28 m × 44 m

Appeared in generation: 126

No of apartments with balconies: 5
Percentage of apartments with balconies: 38.46154 %

Apartments with views to +i: 5
Apartments with views to -i: 7
Apartments with views to +j: 2
Apartments with views to -j: 3
Apartments with no views: 0

Champ No2

Shape code: 7 20 21 21 1 2 20 13 22 2 13 22 20 12 14 20 20 5 21 6 4 7 21 3

Score: 2.684211

No of apartments: 13
No of circulation blocks: 13
Volume: 4160 m3
Total area: 1040 m2
Apartment area: 832 m2
Circulation area: 208 m2

Height: 16 m
Footprint: 28 m × 44 m

Appeared in generation: 125

No of apartments with balconies: 5
Percentage of apartments with balconies: 38.46154 %

Apartments with views to +i: 5
Apartments with views to -i: 7
Apartments with views to +j: 2
Apartments with views to -j: 3
Apartments with no views: 0

Champ No3

Shape code: 8 20 21 21 1 2 20 6 22 2 16 22 20 12 2 20 20 5 21 6 4 1 21 11

Score: 2.684211

No of apartments: 13
No of circulation blocks: 13
Volume: 4160 m3
Total area: 1040 m2
Apartment area: 832 m2
Circulation area: 208 m2

Height: 16 m
Footprint: 24 m × 48 m

Appeared in generation: 123

No of apartments with balconies: 4
Percentage of apartments with balconies: 30.769232 %

Apartments with views to +i: 5
Apartments with views to -i: 8
Apartments with views to +j: 3
Apartments with views to -j: 1
Apartments with no views: 0

 148

Low-Rise Population: 200 Set mutation rate: 0.005

 Actual mutation rate: 0.001 Final average score: 2.3708 Time elapsed: 3871 s

Champ No1

Shape code: 11 18 1 10 21 15 21 3 7 8 19 21 7 12 20 20 14 5 22 6 4 22 11 7

Score: 2.718045

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960 m2
Circulation area: 176 m2

Height: 20 m
Footprint: 32 m × 36 m

Appeared in generation: 2

No of apartments with balconies: 5
Percentage of apartments with balconies: 33.333336 %

Apartments with views to +i: 8
Apartments with views to -i: 3
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

Champ No2

Shape code: 14 5 8 18 7 21 12 6 7 21 5 18 14 17 8 21 5 6 17 8 21 7 6 5

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 36 m × 32 m

Appeared in generation: 103

No of apartments with balconies: 5
Percentage of apartments with balconies: 31.25 %

Apartments with views to +i: 5
Apartments with views to -i: 5
Apartments with views to +j: 4
Apartments with views to -j: 6
Apartments with no views: 0

Champ No3

Shape code: 14 5 8 18 21 16 7 3 21 9 5 6 17 17 8 21 5 6 17 8 21 2 8 5

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 40 m × 28 m

Appeared in generation: 72

No of apartments with balconies: 6
Percentage of apartments with balconies: 37.5 %

Apartments with views to +i: 5
Apartments with views to -i: 6
Apartments with views to +j: 7
Apartments with views to -j: 4
Apartments with no views: 0

 149

Low-Rise Population: 200 Set mutation rate: 0.01

 Actual mutation rate: 0.0023 Final average score: 2.3054 Time elapsed: 3802 s

Champ No1

Shape code: 5 2 8 21 5 19 1 2 3 21 13 1 19 6 21 5 2 8 21 14 8 5 18 7

Score: 2.751880

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 24 m
Footprint: 36 m × 28 m

Appeared in generation: 2

No of apartments with balconies: 4
Percentage of apartments with balconies: 23.529411 %

Apartments with views to +i: 3
Apartments with views to -i: 8
Apartments with views to +j: 8
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 15 5 6 21 17 7 3 8 22 17 17 18 15 17 5 8 21 10 1 5 21 8 14 5

Score: 2.722807

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960 m2
Circulation area: 176 m2

Height: 16 m
Footprint: 40 m × 32 m

Appeared in generation: 9

No of apartments with balconies: 5
Percentage of apartments with balconies: 33.333336 %

Apartments with views to +i: 3
Apartments with views to -i: 2
Apartments with views to +j: 7
Apartments with views to -j: 4
Apartments with no views: 1

Champ No3

Shape code: 16 19 11 19 19 1 6 21 6 5 15 17 8 21 12 6 7 21 4 19 3 18 2 8

Score: 2.718045

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960 m2
Circulation area: 176 m2

Height: 20 m
Footprint: 32 m × 32 m

Appeared in generation: 35

No of apartments with balconies: 7
Percentage of apartments with balconies: 46.666668 %

Apartments with views to +i: 5
Apartments with views to -i: 5
Apartments with views to +j: 4
Apartments with views to -j: 6
Apartments with no views: 0

 150

Low-Rise Population: 200 Set mutation rate: 0.05

 Actual mutation rate: 0.0175 Final average score: 2.1703 Time elapsed: 4088 s

Champ No1

Shape code: 14 4 1 20 20 3 21 5 6 18 7 17 8 5 21 8 6 7 21 4 1 10 20 3

Score: 2.708177

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 20 m
Footprint: 32 m × 32 m

Appeared in generation: 10

No of apartments with balconies: 3
Percentage of apartments with balconies: 18.75 %

Apartments with views to +i: 4
Apartments with views to -i: 4
Apartments with views to +j: 4
Apartments with views to -j: 5
Apartments with no views: 1

Champ No2

Shape code: 2 3 1 4 21 17 16 3 18 2 21 8 6 7 5 21 7 6 12 20 20 5 22 5

Score: 2.708177

No of apartments: 16
No of circulation blocks: 10
Volume: 4736m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 20 m
Footprint: 32 m × 32 m

Appeared in generation: 2

No of apartments with balconies: 3
Percentage of apartments with balconies: 18.75 %

Apartments with views to +i: 4
Apartments with views to -i: 4
Apartments with views to +j: 5
Apartments with views to -j: 4
Apartments with no views: 1

Champ No3

Shape code: 12 19 11 7 21 7 13 8 19 6 21 6 5 1 21 3 16 7 21 7 8 20 20 11

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 28 m × 28 m

Appeared in generation: 25

No of apartments with balconies: 5
Percentage of apartments with balconies: 31.25 %

Apartments with views to +i: 3
Apartments with views to -i: 5
Apartments with views to +j: 6
Apartments with views to -j: 7
Apartments with no views: 0

 151

Low-Rise Population: 200 Set mutation rate: 0.1

 Actual mutation rate: 0.0317 Final average score: 2.2710 Time elapsed: 4393 s

Champ No1

Shape code: 12 21 6 7 8 20 4 20 20 21 8 6 5 7 21 5 14 8 21 3 12 2 18 1

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 28 m × 40 m

Appeared in generation: 2

No of apartments with balconies: 2
Percentage of apartments with balconies: 12.5%

Apartments with views to +i: 6
Apartments with views to -i: 5
Apartments with views to +j: 3
Apartments with views to -j: 5
Apartments with no views: 0

Champ No2

Shape code: 11 8 19 7 21 5 1 10 17 21 5 6 8 21 2 12 21 2 4 1 3 21 14 12

Score: 2.680451

No of apartments: 17
No of circulation blocks: 9
Volume: 4928m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 28 m
Footprint: 32 m × 28 m

Appeared in generation: 126

No of apartments with balconies: 5
Percentage of apartments with balconies: 29.411766 %

Apartments with views to +i: 6
Apartments with views to -i: 5
Apartments with views to +j: 6
Apartments with views to -j: 7
Apartments with no views: 0

Champ No3

Shape code: 14 5 21 5 8 10 21 2 16 21 1 2 20 17 3 17 20 17 5 8 22 2 22 11

Score: 2.665414

No of apartments: 14
No of circulation blocks: 12
Volume: 4352 m3
Total area: 1088 m2
Apartment area: 896 m2
Circulation area: 192 m2

Height: 20 m
Footprint: 36 m × 28 m

Appeared in generation: 475

No of apartments with balconies: 4
Percentage of apartments with balconies: 28.57143 %

Apartments with views to +i: 4
Apartments with views to -i: 7
Apartments with views to +j: 9
Apartments with views to -j: 3
Apartments with no views: 0

 152

Low-Rise Population: 200 Set mutation rate: 0.5

 Actual mutation rate: 0.154 Final average score: 2.2235 Time elapsed: 6180 s

Champ No1

Shape code: 2 1 4 3 21 15 5 6 17 8 21 9 5 6 17 21 19 10 20 11 21 2 1 4

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 32 m × 32 m

Appeared in generation: 2

No of apartments with balconies: 4
Percentage of apartments with balconies: 25 %

Apartments with views to +i: 4
Apartments with views to -i: 6
Apartments with views to +j: 5
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 4 7 3 21 4 3 7 19 22 19 21 21 12 6 7 21 8 6 7 5 21 8 7 3

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 28 m × 28 m

Appeared in generation: 2

No of apartments with balconies: 3
Percentage of apartments with balconies: 18.75 %

Apartments with views to +i: 8
Apartments with views to -i: 2
Apartments with views to +j: 5
Apartments with views to -j: 8
Apartments with no views: 0

Champ No3

Shape code: 2 5 1 21 7 11 21 6 15 20 20 4 22 4 20 22 19 7 13 21 20 20 2 5

Score: 2.684211

No of apartments: 13
No of circulation blocks: 13
Volume: 4160 m3
Total area: 1040 m2
Apartment area: 832 m2
Circulation area: 208 m2

Height: 16 m
Footprint: 32 m × 40 m

Appeared in generation: 28

No of apartments with balconies: 3
Percentage of apartments with balconies: 23.076923 %

Apartments with views to +i: 6
Apartments with views to -i: 6
Apartments with views to +j: 3
Apartments with views to -j: 4
Apartments with no views: 0

 153

Low-Rise Population: 500 Set mutation rate: 0.005

 Actual mutation rate: 0.0011 Final average score: 2.373 Time elapsed: 8905 s

Champ No1

Shape code: 18 14 12 18 1 21 2 17 1 4 3 21 2 1 4 21 2 4 3 1 21 7 8 3

Score: 2.75188

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 24 m
Footprint: 28 m × 28 m

Appeared in generation: 94

No of apartments with balconies: 5
Percentage of apartments with balconies: 29.411766 %

Apartments with views to +i: 6
Apartments with views to -i: 5
Apartments with views to +j: 5
Apartments with views to -j: 6
Apartments with no views: 0

Champ No2

Shape code: 3 17 12 18 1 21 2 17 1 4 3 21 3 15 4 21 2 4 3 1 21 14 8 5

Score: 2.75188

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 24 m
Footprint: 36 m × 28 m

Appeared in generation: 93

No of apartments with balconies: 4
Percentage of apartments with balconies: 23.529411 %

Apartments with views to +i: 6
Apartments with views to -i: 4
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

Champ No3

Shape code: 18 14 12 18 15 21 2 17 1 4 3 21 2 1 4 21 2 4 3 1 21 7 8 3

Score: 2.75188

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 24 m
Footprint: 28 m × 28 m

Appeared in generation: 93

No of apartments with balconies: 5
Percentage of apartments with balconies: 29.411766 %

Apartments with views to +i: 7
Apartments with views to -i: 4
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

 154

Low-Rise Population: 500 Set mutation rate: 0.01

 Actual mutation rate: 0.0029 Final average score: 2.1328 Time elapsed: 8497 s

Champ No1

Shape code: 10 4 1 21 6 5 18 2 16 21 2 12 3 18 21 11 2 8 21 15 6 5 17 8

Score: 2.75188

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 24 m
Footprint: 28 m × 36 m

Appeared in generation: 6

No of apartments with balconies: 4
Percentage of apartments with balconies: 23.529411 %

Apartments with views to +i: 6
Apartments with views to -i: 6
Apartments with views to +j: 5
Apartments with views to -j: 3
Apartments with no views: 0

Champ No2

Shape code: 9 6 5 21 6 5 18 2 16 21 2 12 3 18 21 11 2 8 21 15 6 5 17 8

Score: 2.75188

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 24 m
Footprint: 28 m × 36 m

Appeared in generation: 5

No of apartments with balconies: 4
Percentage of apartments with balconies: 23.529411 %

Apartments with views to +i: 5
Apartments with views to -i: 7
Apartments with views to +j: 5
Apartments with views to -j: 3
Apartments with no views: 0

Champ No3

Shape code: 5 1 6 21 6 5 18 2 16 21 2 12 3 18 21 11 2 8 21 15 6 5 17 8

Score: 2.75188

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088 m2
Circulation area: 144 m2

Height: 24 m
Footprint: 28 m × 36 m

Appeared in generation: 4

No of apartments with balconies: 4
Percentage of apartments with balconies: 23.529411 %

Apartments with views to +i: 5
Apartments with views to -i: 7
Apartments with views to +j: 5
Apartments with views to -j: 4
Apartments with no views: 0

 155

Low-Rise Population: 500 Set mutation rate: 0.05

 Actual mutation rate: 0.0139 Final average score: 2.2481 Time elapsed: 9439 s

Champ No1

Shape code: 4 1 3 21 6 4 21 3 8 18 22 8 2 18 21 14 18 9 22 22 7 11 17 1

Score: 2.736842

No of apartments: 14
No of circulation blocks: 12
Volume: 4352 m3
Total area: 1088m2
Apartment area: 896 m2
Circulation area: 192 m2

Height: 16 m
Footprint: 32 m × 32 m

Appeared in generation: 21

No of apartments with balconies: 3
Percentage of apartments with balconies: 21.428572 %

Apartments with views to +i: 6
Apartments with views to -i: 5
Apartments with views to +j: 3
Apartments with views to -j: 3
Apartments with no views: 0

Champ No2

Shape code: 8 5 7 6 21 12 3 2 21 10 8 20 5 21 3 1 4 21 3 1 4 2 21 11

Score: 2.733083

No of apartments: 18
No of circulation blocks: 8
Volume: 5120 m3
Total area: 1280 m2
Apartment area: 1152 m2
Circulation area: 128 m2

Height: 28 m
Footprint: 28 m × 32 m

Appeared in generation: 5

No of apartments with balconies: 5
Percentage of apartments with balconies: 27.777779 %

Apartments with views to +i: 6
Apartments with views to -i: 6
Apartments with views to +j: 7
Apartments with views to -j: 5
Apartments with no views: 0

Champ No3

Shape code: 8 11 7 19 19 19 6 20 5 21 4 1 2 3 21 7 4 6 20 21 7 19 6 5

Score: 2.718045

No of apartments: 15
No of circulation blocks: 11
Volume: 4544 m3
Total area: 1136 m2
Apartment area: 960 m2
Circulation area: 176 m2

Height: 20 m
Footprint: 32 m × 36 m

Appeared in generation: 2

No of apartments with balconies: 6
Percentage of apartments with balconies: 40 %

Apartments with views to +i: 6
Apartments with views to -i: 4
Apartments with views to +j: 4
Apartments with views to -j: 6
Apartments with no views: 0

 156

Low-Rise Population: 500 Set mutation rate: 0.1

 Actual mutation rate: 0.0344 Final average score: 2.2187 Time elapsed: 9274 s

Champ No1

Shape code: 1 4 20 20 3 2 21 3 4 18 15 21 13 2 8 21 11 1 2 21 8 7 5 6

Score: 2.75188

No of apartments: 17
No of circulation blocks: 9
Volume: 4928 m3
Total area: 1232 m2
Apartment area: 1088m2
Circulation area: 144 m2

Height: 24 m
Footprint: 28 m × 32 m

Appeared in generation: 8

No of apartments with balconies: 4
Percentage of apartments with balconies: 23.529411 %

Apartments with views to +i: 6
Apartments with views to -i: 5
Apartments with views to +j: 5
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 12 7 6 21 8 19 15 3 21 20 5 17 8 18 7 21 11 1 2 21 8 7 5 6

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 32 m × 28 m

Appeared in generation: 10

No of apartments with balconies: 3
Percentage of apartments with balconies: 18.75 %

Apartments with views to +i: 6
Apartments with views to -i: 4
Apartments with views to +j: 5
Apartments with views to -j:6
Apartments with no views: 0

Champ No3

Shape code: 14 8 21 4 14 1 21 8 5 14 18 7 21 8 5 6 18 7 19 21 16 14 18 7

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 32 m × 32 m

Appeared in generation: 7

No of apartments with balconies: 3
Percentage of apartments with balconies: 18.75 %

Apartments with views to +i: 5
Apartments with views to -i: 5
Apartments with views to +j: 4
Apartments with views to -j: 6
Apartments with no views: 0

 157

Low-Rise Population: 500 Set mutation rate: 0.5

 Actual mutation rate: 0.166 Final average score: 2.2257 Time elapsed: 10401 s

Champ No1

Shape code: 4 19 10 1 21 16 19 7 3 21 6 18 1 4 2 21 2 4 1 3 21 9 20 4

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 32 m × 32 m

Appeared in generation: 425

No of apartments with balconies: 6
Percentage of apartments with balconies: 37.5 %

Apartments with views to +i: 5
Apartments with views to -i: 5
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

Champ No2

Shape code: 8 3 2 21 2 20 17 8 3 21 6 18 1 4 2 21 2 4 1 3 21 9 20 4

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 32 m × 32 m

Appeared in generation: 424

No of apartments with balconies: 4
Percentage of apartments with balconies: 25 %

Apartments with views to +i: 7
Apartments with views to -i: 6
Apartments with views to +j: 6
Apartments with views to -j: 3
Apartments with no views: 0

Champ No3

Shape code: 2 3 17 8 21 3 12 2 18 1 21 2 5 8 21 6 1 5 17 21 2 20 5 8

Score: 2.699248

No of apartments: 16
No of circulation blocks: 10
Volume: 4736 m3
Total area: 1184 m2
Apartment area: 1024 m2
Circulation area: 160 m2

Height: 24 m
Footprint: 36 m × 28 m

Appeared in generation: 3

No of apartments with balconies: 7
Percentage of apartments with balconies: 43.75 %

Apartments with views to +i: 5
Apartments with views to -i: 8
Apartments with views to +j: 8
Apartments with views to -j: 3
Apartments with no views: 0

 158

Appendix C
Results for Views and Balconies

Scenario

This design scenario requires 100% of apartments to afford views towards the
positive i direction. To further maximise enjoyment of the views, it is required that
100% of apartments have balconies. Weights for the views and balcony criteria are
set to 1. The genotype length is set to 32. The maximum score for this set of criteria
is 3.

 159

Views and Balconies Population: 50 Set mutation rate: 0.005

 Actual mutation rate: 0.0012 Final average score: 1.7758 Time elapsed: 690 s

Champ No1

Shape code: 11 7 17 21 14 21 7 19 5 19 6 21 6 12 7 21 4 19 20 14 20 21 11 15 17 8 21 17 4 7
21 7

Score: 2.176471

No of apartments: 17
No of circulation blocks: 17
Volume: 5440 m3
Total area: 1360 m2
Apartment area: 1088 m2
Circulation area: 272 m2

Height: 36 m
Footprint: 32 m × 28 m

Appeared in generation: 322

No of apartments with balconies: 9
Percentage of apartments with balconies: 52.941177 %

Apartments with views to +i: 11
Apartments with views to -i: 4
Apartments with views to +j: 4
Apartments with views to -j: 11
Apartments with no views: 0

Champ No2

Shape code: 11 1 17 21 19 2 18 21 6 18 16 21 11 15 19 19 21 8 13 2 18 21 13 15 17 8 21 6 4
7 21 15

Score: 2.176471

No of apartments: 17
No of circulation blocks: 17
Volume: 5440 m3
Total area: 1360 m2
Apartment area: 1088 m2
Circulation area: 272 m2

Height: 36 m
Footprint: 32 m × 36 m

Appeared in generation: 24

No of apartments with balconies: 11
Percentage of apartments with balconies: 64.705887 %

Apartments with views to +i: 9
Apartments with views to -i: 7
Apartments with views to +j: 7
Apartments with views to -j: 7
Apartments with no views: 0

Champ No3

Shape code: 11 7 17 21 19 21 7 19 5 19 21 21 14 18 7 21 19 19 20 14 17 21 4 21 17 8 21 18
4 7 21 16

Score: 2.166667

No of apartments: 12
No of circulation blocks: 22
Volume: 4480 m3
Total area: 1120 m2
Apartment area: 768 m2
Circulation area: 352 m2

Height: 44 m
Footprint: 32 m × 28 m

Appeared in generation: 263

No of apartments with balconies: 5
Percentage of apartments with balconies: 41.666664 %

Apartments with views to +i: 9
Apartments with views to -i: 4
Apartments with views to +j: 4
Apartments with views to -j: 7
Apartments with no views: 0

 160

Views and Balconies Population: 50 Set mutation rate: 0.01

 Actual mutation rate: 0.0031 Final average score: 1.7318 Time elapsed: 912 s

Champ No1

Shape code: 19 21 21 10 21 8 3 18 7 21 19 5 21 3 9 21 19 19 11 7 21 18 10 21 16 21 18 4 18
21 16 19

Score: 2.307692

No of apartments: 13
No of circulation blocks: 21
Volume: 4672m3
Total area: 1168 m2
Apartment area: 832 m2
Circulation area: 336 m2

Height: 48 m
Footprint: 36 m × 32 m

Appeared in generation: 280

No of apartments with balconies: 8
Percentage of apartments with balconies: 61.538464 %

Apartments with views to +i: 9
Apartments with views to -i: 6
Apartments with views to +j: 9
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 19 21 21 10 21 8 3 18 7 21 19 5 21 3 9 21 19 19 11 7 21 18 10 21 16 21 18 4 18
21 16 21

Score: 2.307692

No of apartments: 13
No of circulation blocks: 21
Volume: 4672 m3
Total area: 1168 m2
Apartment area: 832 m2
Circulation area: 336 m2

Height: 52 m
Footprint: 36 m × 32 m

Appeared in generation: 279

No of apartments with balconies: 8
Percentage of apartments with balconies: 61.538464 %

Apartments with views to +i: 9
Apartments with views to -i: 6
Apartments with views to +j: 9
Apartments with views to -j: 4
Apartments with no views: 0

Champ No3

Shape code: 7 21 9 13 21 8 3 18 19 21 19 20 21 3 9 21 19 19 11 7 21 21 10 21 14 21 18 8 2
21 16 21

Score: 2.285714

No of apartments: 14
No of circulation blocks: 20
Volume: 4864 m3
Total area: 1216 m2
Apartment area: 896 m2
Circulation area: 320 m2

Height: 52 m
Footprint: 40 m × 28 m

Appeared in generation: 303

No of apartments with balconies: 8
Percentage of apartments with balconies: 57.14286 %

Apartments with views to +i: 10
Apartments with views to -i: 7
Apartments with views to +j: 9
Apartments with views to -j: 5
Apartments with no views: 0

 161

Views and Balconies Population: 50 Set mutation rate: 0.05

 Actual mutation rate: 0.0137 Final average score: 1.7851 Time elapsed: 1163 s

Champ No1

Shape code: 21 19 19 21 20 22 19 22 20 17 4 21 13 21 16 19 20 20 17 11 21 17 21 13 21 8
20 11 21 17 20 19

Score: 2.428571

No of apartments: 7
No of circulation blocks: 27
Volume: 3520 m3
Total area: 880 m2
Apartment area: 448 m2
Circulation area: 432 m2

Height: 32 m
Footprint: 24 m × 28 m

Appeared in generation: 460

No of apartments with balconies5
Percentage of apartments with balconies: 71.428574 %

Apartments with views to +i: 5
Apartments with views to -i: 2
Apartments with views to +j: 4
Apartments with views to -j: 2
Apartments with no views: 0

Champ No2

Shape code: 21 18 19 15 20 22 19 14 20 17 4 21 14 21 4 14 21 20 8 6 21 7 21 17 21 10 20 16
22 19 20 4

Score: 2.416667

No of apartments: 12
No of circulation blocks: 22
Volume: 4480m3
Total area: 1120 m2
Apartment area: 768 m2
Circulation area: 352 m2

Height: 32 m
Footprint: 24 m × 40 m

Appeared in generation: 383

No of apartments with balconies: 8
Percentage of apartments with balconies: 66.666672 %

Apartments with views to +i: 9
Apartments with views to -i: 6
Apartments with views to +j: 3
Apartments with views to -j: 6
Apartments with no views: 0

Champ No3

Shape code: 21 19 19 14 20 22 19 10 20 17 17 21 18 21 16 21 7 20 17 11 21 3 21 15 21 4 20
20 19 14 21 4

Score: 2.4

No of apartments: 10
No of circulation blocks: 24
Volume: 4096 m3
Total area: 1024 m2
Apartment area: 640 m2
Circulation area: 384 m2

Height: 36 m
Footprint: 24 m × 36 m

Appeared in generation: 451

No of apartments with balconies: 6
Percentage of apartments with balconies: 60.000004 %

Apartments with views to +i: 8
Apartments with views to -i: 4
Apartments with views to +j: 5
Apartments with views to -j: 7
Apartments with no views: 0

 162

Views and Balconies Population: 50 Set mutation rate: 0.1

 Actual mutation rate: 0.024 Final average score: 1.732 Time elapsed: 1358 s

Champ No1

Shape code: 12 21 17 21 12 21 12 10 21 8 18 21 16 21 8 19 21 21 17 22 20 21 19 19 19 21
21 18 4 14 22 8

Score: 2.4

No of apartments: 23
No of circulation blocks: 27
Volume: 7616 m3
Total area: 1904 m2
Apartment area: 1472 m2
Circulation area: 432 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 201

No of apartments with balconies: 5
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 9
Apartments with views to -i: 5
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

Champ No2

Shape code: 10 21 17 21 12 21 12 7 21 8 18 21 16 21 8 19 21 21 17 22 20 21 19 19 19 21 21
18 4 14 22 8

Score: 2.4

No of apartments: 10
No of circulation blocks: 24
Volume: 4096 m3
Total area: 1024 m2
Apartment area: 640 m2
Circulation area: 384 m2

Height: 48 m
Footprint: 24 m × 28 m

Appeared in generation: 201

No of apartments with balconies: 5
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 9
Apartments with views to -i: 4
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

Champ No3

Shape code: 12 21 17 21 12 21 12 10 21 8 18 21 16 21 8 19 21 21 17 22 20 21 19 19 19 21
21 18 4 14 22 8

Score: 2.4

No of apartments: 10
No of circulation blocks: 24
Volume: 4096 m3
Total area: 1024 m2
Apartment area: 640 m2
Circulation area: 384 m2

Height: 48 m
Footprint: 24 m × 28 m

Appeared in generation: 200

No of apartments with balconies: 5
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 9
Apartments with views to -i: 5
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

 163

Views and Balconies Population: 50 Set mutation rate: 0.5

 Actual mutation rate: 0.1635 Final average score: 1.8322 Time elapsed: 2290 s

Champ No1

Shape code: 21 21 18 19 19 18 18 21 11 15 21 17 17 9 5 21 17 11 15 21 4 14 21 21 19 7 19
20 17 22 10 18

Score: 2.5

No of apartments: 10
No of circulation blocks: 24
Volume: 4096 m3
Total area: 1024 m2
Apartment area: 640 m2
Circulation area: 384 m2

Height: 40 m
Footprint: 32 m × 20 m

Appeared in generation: 256

No of apartments with balconies: 7
Percentage of apartments with balconies: 70 %

Apartments with views to +i: 8
Apartments with views to -i: 4
Apartments with views to +j: 4
Apartments with views to -j: 6
Apartments with no views: 0

Champ No2

Shape code: 17 11 21 2 21 4 21 8 19 21 12 18 15 21 15 19 20 4 21 20 3 8 21 8 6 21 21 16 19
21 14 4

Score: 2.466667

No of apartments: 15
No of circulation blocks: 19
Volume: 5056 m3
Total area: 1264 m2
Apartment area: 960 m2
Circulation area: 304 m2

Height: 48 m
Footprint: 28 m × 32 m

Appeared in generation: 364

No of apartments with balconies: 9
Percentage of apartments with balconies: 60.000004 %

Apartments with views to +i: 13
Apartments with views to -i: 4
Apartments with views to +j: 8
Apartments with views to -j: 7
Apartments with no views: 0

Champ No3

Shape code: 10 18 17 21 19 9 21 11 19 21 16 21 2 8 21 20 20 12 19 7 21 13 15 21 8 18 21 12
21 15 21 19

Score: 2.461539

No of apartments: 13
No of circulation blocks: 21
Volume: 4672 m3
Total area: 1168 m2
Apartment area: 832 m2
Circulation area: 336 m2

Height: 48 m
Footprint: 32 m × 32 m

Appeared in generation: 164

No of apartments with balconies: 10
Percentage of apartments with balconies: 76.92308 %

Apartments with views to +i: 9
Apartments with views to -i: 6
Apartments with views to +j: 9
Apartments with views to -j: 7
Apartments with no views: 0

 164

Views and Balconies Population: 200 Set mutation rate: 0.005

 Actual mutation rate: 0.0012 Final average score: 1.9566 Time elapsed: 4109 s

Champ No1

Shape code: 4 18 18 19 18 18 21 16 21 5 15 17 21 8 2 20 11 21 4 21 8 3 21 19 19 20 21 19
11 18 19 21

Score: 2.545455

No of apartments: 11
No of circulation blocks: 23
Volume: 4288 m3
Total area: 1072 m2
Apartment area: 704 m2
Circulation area: 368 m2

Height: 40 m
Footprint: 32 m × 44 m

Appeared in generation: 488

No of apartments with balconies: 8
Percentage of apartments with balconies: 72.727272 %

Apartments with views to +i: 9
Apartments with views to -i: 3
Apartments with views to +j: 6
Apartments with views to -j: 3
Apartments with no views: 0

Champ No2

Shape code: 8 18 18 19 18 19 21 8 21 5 15 17 21 8 2 20 11 21 4 19 7 3 21 12 19 20 21 19 11
21 19 21

Score: 2.5

No of apartments: 12
No of circulation blocks: 22
Volume: 4480 m3
Total area: 1120 m2
Apartment area: 768 m2
Circulation area: 352 m2

Height: 40 m
Footprint: 32 m × 32 m

Appeared in generation: 483

No of apartments with balconies: 9
Percentage of apartments with balconies: 75 %

Apartments with views to +i: 9
Apartments with views to -i: 3
Apartments with views to +j: 6
Apartments with views to -j: 4
Apartments with no views: 0

Champ No3

Shape code: 8 21 18 22 18 18 21 16 21 5 15 19 21 8 2 20 11 21 4 19 7 3 21 16 6 20 21 19 11
21 19 21

Score: 2.461539

No of apartments: 13
No of circulation blocks: 21
Volume: 4672 m3
Total area: 1168 m2
Apartment area: 832 m2
Circulation area: 336 m2

Height: 40 m
Footprint: 36 m × 32 m

Appeared in generation: 497

No of apartments with balconies: 10
Percentage of apartments with balconies: 76.92308 %

Apartments with views to +i: 9
Apartments with views to -i: 4
Apartments with views to +j: 7
Apartments with views to -j: 4
Apartments with no views: 0

 165

Views and Balconies Population: 200 Set mutation rate: 0.01

 Actual mutation rate: 0.0025 Final average score: 1.7445 Time elapsed: 4149 s

Champ No1

Shape code: 18 19 19 20 20 17 20 21 8 5 21 18 18 15 21 3 18 19 21 19 21 12 18 19 20 22 11
7 22 18 7 19

Score: 2.375

No of apartments: 8
No of circulation blocks: 26
Volume: 3712 m3
Total area: 928 m2
Apartment area: 512 m2
Circulation area: 416 m2

Height: 28 m
Footprint: 40 m × 28 m

Appeared in generation: 356

No of apartments with balconies: 4
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 7
Apartments with views to -i: 1
Apartments with views to +j: 4
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 7 4 21 20 14 16 21 5 21 16 21 13 17 7 21 3 18 19 9 21 3 18 18 18 10 22 17 16
22 11 7 19

Score: 2.333333

No of apartments: 15
No of circulation blocks: 19
Volume: 5056 m3
Total area: 1264 m2
Apartment area: 960 m2
Circulation area: 304 m2

Height: 32 m
Footprint: 28 m × 36 m

Appeared in generation: 490

No of apartments with balconies: 10
Percentage of apartments with balconies: 66.666672 %

Apartments with views to +i: 10
Apartments with views to -i: 7
Apartments with views to +j: 6
Apartments with views to -j: 6
Apartments with no views: 0

Champ No3

Shape code: 9 4 21 20 14 16 21 19 21 16 21 18 18 15 21 10 21 19 19 20 20 20 16 10 20 22
17 16 22 4 15 20

Score: 2.333333

No of apartments: 12
No of circulation blocks: 22
Volume: 4480 m3
Total area: 1120 m2
Apartment area: 768 m2
Circulation area: 352 m2

Height: 32 m
Footprint: 28 m × 40 m

Appeared in generation: 477

No of apartments with balconies: 7
Percentage of apartments with balconies: 58.333332 %

Apartments with views to +i: 9
Apartments with views to -i: 6
Apartments with views to +j: 7
Apartments with views to -j: 3
Apartments with no views: 0

 166

Views and Balconies Population: 200 Set mutation rate: 0.05

 Actual mutation rate: 0.0148 Final average score: 1.7789 Time elapsed: 4655 s

Champ No1

Shape code: 16 21 18 17 20 20 3 21 11 19 21 7 8 21 4 20 19 20 22 19 21 21 15 19 21 11 19
18 8 21 7 11

Score: 2.545455

No of apartments: 16
No of circulation blocks: 34
Volume: 6272 m3
Total area: 1568 m2
Apartment area: 1024 m2
Circulation area: 544 m2

Height: 64 m
Footprint: 28 m × 24 m

Appeared in generation: 123

No of apartments with balconies: 7
Percentage of apartments with balconies: 63.636364 %

Apartments with views to +i: 10
Apartments with views to -i: 1
Apartments with views to +j: 7
Apartments with views to -j: 7
Apartments with no views: 0

Champ No2

Shape code: 21 21 18 21 15 4 3 21 11 15 21 7 8 21 4 20 19 20 22 19 21 21 15 19 21 11 19 18
8 21 7 11

Score: 2.538461

No of apartments: 13
No of circulation blocks: 21
Volume: 4672 m3
Total area: 1168 m2
Apartment area: 832 m2
Circulation area: 336 m2

Height: 44 m
Footprint: 36 m × 28 m

Appeared in generation: 122

No of apartments with balconies: 9
Percentage of apartments with balconies: 69.230774 %

Apartments with views to +i: 11
Apartments with views to -i: 0
Apartments with views to +j: 6
Apartments with views to -j: 8
Apartments with no views: 0

Champ No3

Shape code: 20 19 3 21 11 15 21 14 4 21 8 21 15 3 19 21 21 8 21 4 19 18 1 19 6 21 4 21 3 21
18 18

Score: 2.5

No of apartments: 14
No of circulation blocks: 20
Volume: 4864 m3
Total area: 1216 m2
Apartment area: 896 m2
Circulation area: 320 m2

Height: 48 m
Footprint: 32 m × 28 m

Appeared in generation: 460

No of apartments with balconies: 9
Percentage of apartments with balconies: 64.285713 %

Apartments with views to +i: 12
Apartments with views to -i: 3
Apartments with views to +j: 7
Apartments with views to -j: 7
Apartments with no views: 0

 167

Views and Balconies Population: 200 Set mutation rate: 0.1

 Actual mutation rate: 0.0315 Final average score: 1.8511 Time elapsed: 4813 s

Champ No1

Shape code: 20 16 19 19 21 18 2 21 3 9 21 19 15 21 4 19 7 20 22 20 4 21 21 16 21 18 8 18
21 16 21 8

Score: 2.583333

No of apartments: 12
No of circulation blocks: 22
Volume: 4480 m3
Total area: 1120 m2
Apartment area: 768 m2
Circulation area: 352 m2

Height: 40 m
Footprint: 36 m × 36 m

Appeared in generation: 49

No of apartments with balconies: 9
Percentage of apartments with balconies: 75 %

Apartments with views to +i: 10
Apartments with views to -i: 5
Apartments with views to +j: 5
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 3 8 21 15 19 21 17 16 21 12 18 21 15 21 15 20 21 1 21 18 15 21 6 4 21 16 21 4
15 20 21 11

Score: 2.533333

No of apartments: 15
No of circulation blocks: 19
Volume: 5056 m3
Total area: 1264 m2
Apartment area: 960 m2
Circulation area: 304 m2

Height: 52 m
Footprint: 28 m × 24 m

Appeared in generation: 496

No of apartments with balconies: 10
Percentage of apartments with balconies: 66.666672 %

Apartments with views to +i: 13
Apartments with views to -i: 4
Apartments with views to +j: 9
Apartments with views to -j: 10
Apartments with no views: 0

Champ No3

Shape code: 11 21 8 19 21 17 15 21 21 12 21 16 3 21 19 3 18 21 16 21 3 21 14 4 21 16 21 4
15 20 21 4

Score: 2.533333

No of apartments: 15
No of circulation blocks: 19
Volume: 5056 m3
Total area: 1264 m2
Apartment area: 960 m2
Circulation area: 304 m2

Height: 56 m
Footprint: 24 m × 28 m

Appeared in generation: 491

No of apartments with balconies: 9
Percentage of apartments with balconies: 60.000004 %

Apartments with views to +i: 14
Apartments with views to -i: 4
Apartments with views to +j: 9
Apartments with views to -j: 7
Apartments with no views: 0

 168

Views and Balconies Population: 200 Set mutation rate: 0.5

 Actual mutation rate: 0.1649 Final average score: 1.7274 Time elapsed: 7107 s

Champ No1

Shape code: 8 18 21 12 21 21 3 18 19 19 21 3 21 16 21 17 8 21 19 18 15 19 21 16 21 3 19 18
15 21 17 21

Score: 2.7

No of apartments: 10
No of circulation blocks: 24
Volume: 4096 m3
Total area: 1024 m2
Apartment area: 640 m2
Circulation area: 384 m2

Height: 52 m
Footprint: 32 m × 28 m

Appeared in generation: 294

No of apartments with balconies: 7
Percentage of apartments with balconies: 70 %

Apartments with views to +i: 10
Apartments with views to -i: 3
Apartments with views to +j: 7
Apartments with views to -j: 3
Apartments with no views: 0

Champ No2

Shape code: 19 21 15 11 21 4 21 16 21 7 4 21 18 8 6 21 1 21 18 15 21 16 19 3 19 19 21 21 7
21 20 10

Score: 2.571429

No of apartments: 14
No of circulation blocks: 20
Volume: 4864 m3
Total area: 1216 m2
Apartment area: 896 m2
Circulation area: 320 m2

Height: 52 m
Footprint: 40 m × 32 m

Appeared in generation: 193

No of apartments with balconies: 11
Percentage of apartments with balconies: 78.571426 %

Apartments with views to +i: 11
Apartments with views to -i: 4
Apartments with views to +j: 7
Apartments with views to -j: 8
Apartments with no views: 0

Champ No3

Shape code: 17 17 18 17 20 20 11 21 8 19 3 19 21 4 19 2 21 11 15 21 19 22 19 19 21 17 11
21 18 17 18 2

Score: 2.555556

No of apartments: 9
No of circulation blocks: 25
Volume: 3904 m3
Total area: 976 m2
Apartment area: 576 m2
Circulation area: 400 m2

Height: 28 m
Footprint: 36 m × 36 m

Appeared in generation: 154

No of apartments with balconies: 7
Percentage of apartments with balconies: 77.777779 %

Apartments with views to +i: 7
Apartments with views to -i: 2
Apartments with views to +j: 6
Apartments with views to -j: 3
Apartments with no views: 0

 169

Views and Balconies Population: 500 Set mutation rate: 0.005

 Actual mutation rate: 0.0009 Final average score: 1.506 Time elapsed: 10633 s

Champ No1

Shape code: 8 7 3 19 21 7 5 17 8 21 20 20 12 19 21 4 18 7 21 16 6 21 3 7 21 17 17 17 21 18
22 16

Score: 2.357143

No of apartments: 14
No of circulation blocks: 20
Volume: 4864 m3
Total area: 1216 m2
Apartment area: 896 m2
Circulation area: 320 m2

Height: 36 m
Footprint: 32 m × 36 m

Appeared in generation: 89

No of apartments with balconies: 9
Percentage of apartments with balconies: 64.285713 %

Apartments with views to +i: 10
Apartments with views to -i: 2
Apartments with views to +j: 6
Apartments with views to -j: 7
Apartments with no views: 0

Champ No2

Shape code: 4 21 8 19 18 22 8 18 19 21 17 18 22 18 21 1 19 19 7 20 20 21 18 4 18 17 17 7
21 12 21 16

Score: 2.333333

No of apartments: 9
No of circulation blocks: 25
Volume: 3904 m3
Total area: 976 m2
Apartment area: 576 m2
Circulation area: 400 m2

Height: 24 m
Footprint: 36 m × 40 m

Appeared in generation: 164

No of apartments with balconies: 5
Percentage of apartments with balconies: 55.555557 %

Apartments with views to +i: 7
Apartments with views to -i: 2
Apartments with views to +j: 2
Apartments with views to -j: 5
Apartments with no views: 0

Champ No3

Shape code: 4 21 8 19 18 22 8 18 19 21 17 18 22 18 21 1 19 19 7 20 20 21 18 4 18 17 17 7
21 12 21 8

Score: 2.333333

No of apartments: 9
No of circulation blocks: 25
Volume: 3904 m3
Total area: 976 m2
Apartment area: 576 m2
Circulation area: 400 m2

Height: 24 m
Footprint: 36 m × 44 m

Appeared in generation: 163

No of apartments with balconies: 5
Percentage of apartments with balconies: 55.555557 %

Apartments with views to +i: 7
Apartments with views to -i: 1
Apartments with views to +j: 2
Apartments with views to -j: 5
Apartments with no views: 0

 170

Views and Balconies Population: 500 Set mutation rate: 0.01

 Actual mutation rate: 0.0025 Final average score: 1.7149 Time elapsed: 10137 s

Champ No1

Shape code: 21 19 18 18 16 21 21 9 19 19 3 22 16 20 20 20 21 14 21 18 18 19 3 7 21 14 21 6
21 20 20 20

Score: 2.555556

No of apartments: 9
No of circulation blocks: 25
Volume: 3904 m3
Total area: 976 m2
Apartment area: 576 m2
Circulation area: 400 m2

Height: 36 m
Footprint: 36 m × 32 m

Appeared in generation: 317

No of apartments with balconies: 8
Percentage of apartments with balconies: 88.888893 %

Apartments with views to +i: 6
Apartments with views to -i: 4
Apartments with views to +j: 2
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 21 21 8 19 18 21 21 9 19 19 3 22 16 20 20 20 21 14 21 18 18 19 3 7 21 14 21 6
21 20 20 20

Score: 2.555556

No of apartments: 9
No of circulation blocks: 25
Volume: 3904 m3
Total area: 976 m2
Apartment area: 576 m2
Circulation area: 400 m2

Height: 40 m
Footprint: 36 m × 32 m

Appeared in generation: 316

No of apartments with balconies: 8
Percentage of apartments with balconies: 88.888893 %

Apartments with views to +i: 6
Apartments with views to -i: 4
Apartments with views to +j3
Apartments with views to -j: 4
Apartments with no views: 0

Champ No3

Shape code: 21 19 18 18 16 21 21 9 19 19 3 22 16 20 20 20 21 14 21 18 18 19 3 7 21 14 17
20 21 17 9 20

Score: 2.555556

No of apartments: 9
No of circulation blocks: 25
Volume: 3904m3
Total area: 976 m2
Apartment area: 576 m2
Circulation area: 400 m2

Height: 32 m
Footprint: 36 m × 32 m

Appeared in generation: 314

No of apartments with balconies: 8
Percentage of apartments with balconies: 88.888893 %

Apartments with views to +i: 6
Apartments with views to -i: 4
Apartments with views to +j: 2
Apartments with views to -j: 4
Apartments with no views: 0

 171

Views and Balconies Population: 500 Set mutation rate: 0.05

 Actual mutation rate: 0.0162 Final average score: 1.778 Time elapsed: 10137 s

Champ No1

Shape code: 21 16 7 19 21 12 18 21 3 21 16 19 21 20 4 21 8 21 4 21 16 19 20 19 19 22 18 21
19 19 18 22

Score: 2.666667

No of apartments: 9
No of circulation blocks: 25
Volume: 3904 m3
Total area: 976 m2
Apartment area: 576 m2
Circulation area: 400 m2

Height: 40 m
Footprint: 36 m × 28 m

Appeared in generation: 404

No of apartments with balconies: 7
Percentage of apartments with balconies: 77.777779 %

Apartments with views to +i: 8
Apartments with views to -i: 2
Apartments with views to +j: 5
Apartments with views to -j: 4
Apartments with no views: 0

Champ No2

Shape code: 11 18 18 16 19 21 17 7 20 3 21 8 18 19 10 21 18 21 21 7 21 19 20 21 4 21 8 3
21 4 21 21

Score: 2.545455

No of apartments: 11
No of circulation blocks: 23
Volume: 4288 m3
Total area: 1072 m2
Apartment area: 704 m2
Circulation area: 368 m2

Height: 52 m
Footprint: 28 m × 28 m

Appeared in generation: 287

No of apartments with balconies: 7
Percentage of apartments with balconies: 63.636364 %

Apartments with views to +i: 10
Apartments with views to -i: 1
Apartments with views to +j: 6
Apartments with views to -j: 4
Apartments with no views: 0

Champ No3

Shape code: 8 3 21 15 21 16 21 8 3 21 16 21 8 18 21 17 7 20 13 21 10 17 21 2 17 21 4 9 20
20 20 22

Score: 2.5

No of apartments: 14
No of circulation blocks: 20
Volume: 4864 m3
Total area: 1216 m2
Apartment area: 896 m2
Circulation area: 320 m2

Height: 44 m
Footprint: 36 m × 28 m

Appeared in generation: 459

No of apartments with balconies: 10
Percentage of apartments with balconies: 71.428574 %

Apartments with views to +i: 11
Apartments with views to -i: 6
Apartments with views to +j: 12
Apartments with views to -j: 3
Apartments with no views: 0

 172

Views and Balconies Population: 500 Set mutation rate: 0.1

 Actual mutation rate: 0.0333 Final average score: 1.7872 Time elapsed: 10482 s

Champ No1

Shape code: 7 21 12 20 21 3 18 19 18 21 8 10 21 17 7 17 20 19 21 11 21 20 20 8 19 19 21 8
21 1 21 4

Score: 2.636364

No of apartments: 11
No of circulation blocks: 23
Volume: 4288m3
Total area: 1072 m2
Apartment area: 704 m2
Circulation area: 368 m2

Height: 44 m
Footprint: 20 m × 40 m

Appeared in generation: 299

No of apartments with balconies: 8
Percentage of apartments with balconies: 72.727272 %

Apartments with views to +i: 10
Apartments with views to -i: 3
Apartments with views to +j: 6
Apartments with views to -j: 6
Apartments with no views: 0

Champ No2

Shape code: 3 21 10 21 5 2 17 21 11 21 17 16 21 15 3 19 21 19 9 21 7 21 12 14 21 8 21 20 4
21 3 15

Score: 2.625

No of apartments: 16
No of circulation blocks: 18
Volume: 5248 m3
Total area: 1312 m2
Apartment area: 1024 m2
Circulation area: 288 m2

Height: 52 m
Footprint: 28 m × 32 m

Appeared in generation: 429

No of apartments with balconies: 14
Percentage of apartments with balconies: 87.5 %

Apartments with views to +i: 12
Apartments with views to -i: 6
Apartments with views to +j: 12
Apartments with views to -j:8
Apartments with no views: 0

Champ No3

Shape code: 20 19 18 21 3 19 7 21 14 17 16 20 20 20 22 17 21 20 19 20 21 18 7 4 21 16 21
12 19 19 19 19

Score: 2.625

No of apartments: 8
No of circulation blocks: 26
Volume: 3712 m3
Total area: 928 m2
Apartment area: 512 m2
Circulation area: 416 m2

Height: 28 m
Footprint: 24 m × 40 m

Appeared in generation: 90

No of apartments with balconies: 6
Percentage of apartments with balconies: 75 %

Apartments with views to +i: 7
Apartments with views to -i: 3
Apartments with views to +j: 1
Apartments with views to -j: 5
Apartments with no views: 0

 173

Views and Balconies Population: 500 Set mutation rate: 0.5

 Actual mutation rate: 0.1654 Final average score: 1.7597 Time elapsed: 11790 s

Champ No1

Shape code: 10 21 18 21 20 20 22 17 17 18 19 18 21 16 21 21 19 21 21 4 14 21 15 19 11 21
3 15 21 8 21 4

Score: 2.6

No of apartments: 10
No of circulation blocks: 24
Volume: 4096 m3
Total area: 1024 m2
Apartment area: 640 m2
Circulation area: 384 m2

Height: 48 m
Footprint: 28 m × 28 m

Appeared in generation: 456

No of apartments with balconies: 6
Percentage of apartments with balconies: 60.000004 %

Apartments with views to +i: 10
Apartments with views to -i: 2
Apartments with views to +j: 7
Apartments with views to -j: 5
Apartments with no views: 0

Champ No2

Shape code: 21 16 21 19 18 8 21 1 11 21 10 20 20 12 21 8 3 21 4 20 20 21 4 19 21 20 12 22
19 21 21 21

Score: 2.545455

No of apartments: 11
No of circulation blocks: 23
Volume: 4288 m3
Total area: 1072 m2
Apartment area: 704 m2
Circulation area: 368 m2

Height: 48 m
Footprint: 28 m × 44 m

Appeared in generation: 435

No of apartments with balconies: 8
Percentage of apartments with balconies: 72.727272 %

Apartments with views to +i: 9
Apartments with views to -i: 3
Apartments with views to +j: 5
Apartments with views to -j: 5
Apartments with no views: 0

Champ No3

Shape code: 21 10 8 21 11 15 21 18 15 21 4 14 21 17 18 18 9 19 21 18 16 19 20 11 21 9 4 19
21 12 21 17

Score: 2.538461

No of apartments: 13
No of circulation blocks: 21
Volume: 4672 m3
Total area: 1168 m2
Apartment area: 832 m2
Circulation area: 336 m2

Height: 44 m
Footprint: 28 m × 36 m

Appeared in generation: 457

No of apartments with balconies: 9
Percentage of apartments with balconies: 69.230774 %

Apartments with views to +i: 11
Apartments with views to -i: 5
Apartments with views to +j: 6
Apartments with views to -j: 7
Apartments with no views: 0

 174

Appendix D
Results for Multiple Criteria

Scenario

In this case, design goals from the previous test cases are combined. The building
should be as high as possible, the percentage of apartments should be as high as
possible, and as many apartments as possible should have balconies. The goal
values for these three criteria are therefore set to their maximum values, at 64
metres, 80%, and 100% respectively. The goal value for apartments with views in the
positive i direction is set to 80% (allowing, perhaps, the 20% of apartments that don’t
have views in that direction to be sold or rented at a lower price). The weights for the
criteria mentioned so far have been set to 1. A less important goal is to give the
building an oblong footprint, measuring 24 × 64 metres in the i and j directions

respectively. The weights for these two criteria have been set to 0.6. This set of
criteria seems likely to be satisfied by large buildings; accordingly, the genotype
length for this case is set to 64. Given that some of the criteria might be conflicting,
and given the impossibility of attaining the apartment percentage criterion, the best
scores for this set should be lower than 6.2.

 175

Multiple Criteria Population: 50 Set mutation rate: 0.005

 Actual mutation rate: 0.0009 Final average score: 3.7918 Time elapsed: 1823 s

Champ No1

Shape code: 7 13 21 20 3 4 2 21 15 21 3 16 2 21 12 3 21 7 13 21 9 4 20 20 14 21 16 2 3
18 21 4 6 20 21 19 3 7 19 21 10 8 5 18 21 11 9 21 9 5 6 21 6 17 16 18 2 21 20 10 4 20
22 20

Score: 4.684771

No of apartments: 36
No of circulation blocks: 30
Volume: 11136 m3
Total area: 2784 m2
Apartment area: 2304 m2
Circulation area: 480 m2

Height: 64 m
Footprint: 28 m × 32 m

Appeared in generation: 3

No of apartments with balconies: 19
Percentage of apartments with balconies: 52.777779 %

Apartments with views to +i: 15
Apartments with views to -i: 16
Apartments with views to +j: 16
Apartments with views to -j: 13
Apartments with no views: 0

Champ No2

Shape code: 17 13 21 20 3 4 2 21 15 21 3 16 2 21 12 3 21 7 13 21 9 4 20 20 14 21 16 2 3
18 21 4 6 20 21 19 3 7 19 21 10 8 5 18 21 11 9 21 9 5 6 21 6 17 16 18 2 21 20 10 4 20
22 20

Score: 4.669131

No of apartments: 35
No of circulation blocks: 31
Volume: 10944 m3
Total area: 2736 m2
Apartment area: 2240 m2
Circulation area: 496 m2

Height: 64 m
Footprint: 28 m × 32 m

Appeared in generation: 2

No of apartments with balconies: 19
Percentage of apartments with balconies: 54.285717 %

Apartments with views to +i: 14
Apartments with views to -i: 16
Apartments with views to +j: 16
Apartments with views to -j: 12
Apartments with no views: 0

Champ No3

Shape code: 15 19 11 19 2 21 11 2 18 8 21 4 3 18 7 19 21 19 11 7 19 21 11 2 17 21 11 9
19 21 18 21 4 1 6 20 21 18 2 1 17 4 21 14 17 5 17 21 9 21 16 3 2 18 18 18 21 3 19 18 17
4 21 11

Score: 4.59014

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 60 m
Footprint: 36 m × 40 m

Appeared in generation: 3

No of apartments with balconies: 15
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 16
Apartments with views to -i: 10
Apartments with views to +j: 14
Apartments with views to -j: 12
Apartments with no views: 0

 176

Multiple Criteria Population: 50 Set mutation rate: 0.01

 Actual mutation rate: 0.0025 Final average score: 4.4106 Time elapsed: 2085 s

Champ No1

Shape code: 3 18 17 16 21 6 4 21 8 19 19 3 18 2 21 7 16 20 21 14 21 20 4 3 21 16 2 21 4 21
18 12 19 18 7 21 11 19 19 22 17 22 20 12 20 20 20 14 21 4 21 21 15 21 19 14 5 21 10 17
21 7 11 21

Score: 4.816819

No of apartments: 27
No of circulation blocks: 39
Volume: 9408 m3
Total area: 2352 m2
Apartment area: 1728 m2
Circulation area: 624 m2

Height: 64 m
Footprint: 36 m × 44 m

Appeared in generation: 984

No of apartments with balconies: 13
Percentage of apartments with balconies: 48.148148 %

Apartments with views to +i: 20
Apartments with views to -i: 8
Apartments with views to +j: 13
Apartments with views to -j: 15
Apartments with no views: 0

Champ No2

Shape code: 10 18 17 16 21 3 4 21 8 19 19 3 18 2 21 7 16 20 21 14 21 20 4 3 21 16 2 21 4
21 18 12 19 18 7 21 11 19 19 22 17 22 20 12 20 20 20 14 21 4 21 21 15 21 19 14 5 21 10
17 21 7 11 21

Score: 4.816819

No of apartments: 27
No of circulation blocks: 39
Volume: 9408m3
Total area: 2352 m2
Apartment area: 1728 m2
Circulation area: 624 m2

Height: 64 m
Footprint: 36 m × 44 m

Appeared in generation: 983

No of apartments with balconies: 13
Percentage of apartments with balconies: 48.148148 %

Apartments with views to +i: 20
Apartments with views to -i: 8
Apartments with views to +j: 14
Apartments with views to -j: 14
Apartments with no views: 0

Champ No3

Shape code: 10 18 17 16 21 3 4 21 8 19 19 3 18 2 21 7 16 20 21 14 21 20 4 3 21 16 2 21 4
21 18 12 19 18 7 21 11 19 19 22 17 22 20 12 20 20 20 14 21 4 21 21 15 21 19 14 5 21 10
17 21 7 19 21

Score: 4.812881

No of apartments: 26
No of circulation blocks: 40
Volume: 9216 m3
Total area: 2304 m2
Apartment area: 1664 m2
Circulation area: 640 m2

Height: 64 m
Footprint: 36 m × 44 m

Appeared in generation: 984

No of apartments with balconies: 13
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 19
Apartments with views to -i: 8
Apartments with views to +j: 13
Apartments with views to -j: 13
Apartments with no views: 0

 177

Multiple Criteria Population: 50 Set mutation rate: 0.05

 Actual mutation rate: 0.0136 Final average score: 4.2531 Time elapsed: 2875 s

Champ No1

Shape code: 6 21 4 2 21 14 8 18 18 21 17 21 2 21 7 21 11 8 7 21 10 8 21 19 14 21 9 21 4 1
21 4 20 21 8 7 20 11 21 8 2 21 19 20 20 14 20 22 2 1 17 5 22 6 20 22 16 22 22 4 14 22 8 22

Score: 4.87365

No of apartments: 31
No of circulation blocks: 35
Volume: 10176m3
Total area: 2544 m2
Apartment area: 1984 m2
Circulation area: 560 m2

Height: 64 m
Footprint: 28 m × 52 m

Appeared in generation: 470

No of apartments with balconies: 17
Percentage of apartments with balconies: 54.838711 %

Apartments with views to +i: 17
Apartments with views to -i: 14
Apartments with views to +j: 10
Apartments with views to -j: 11
Apartments with no views: 0

Champ No2

Shape code: 21 8 21 11 7 19 21 6 12 21 16 18 21 19 11 1 2 21 6 16 21 2 21 14 8 21 3 21 2 17
17 20 12 21 16 21 20 2 16 20 13 21 19 19 20 4 22 22 17 1 20 20 6 22 2 4 3 22 17 4 22 19
20 22

Score: 4.870448

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 60 m
Footprint: 32 m × 52 m

Appeared in generation: 754

No of apartments with balconies: 18
Percentage of apartments with balconies: 64.285713 %

Apartments with views to +i: 15
Apartments with views to -i: 13
Apartments with views to +j: 9
Apartments with views to -j: 10
Apartments with no views: 0

Champ No3

Shape code: 16 21 20 2 21 6 8 18 18 21 17 21 2 21 7 21 11 8 7 21 10 8 21 19 14 21 9 21 4 1
21 4 20 21 8 7 20 11 21 8 2 21 19 20 20 14 20 22 2 1 17 5 22 4 20 22 16 22 22 4 14 22 8 22

Score: 4.861568

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 64 m
Footprint: 28 m × 52 m

Appeared in generation: 471

No of apartments with balconies: 15
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 18
Apartments with views to -i: 13
Apartments with views to +j: 10
Apartments with views to -j: 9
Apartments with no views: 2

 178

Multiple Criteria Population: 50 Set mutation rate: 0.1

 Actual mutation rate: 0.0235 Final average score: 4.2175 Time elapsed: 3482 s

Champ No1

Shape code: 14 16 21 20 4 21 19 11 7 21 15 20 19 13 21 8 2 11 18 18 21 21 18 22 19 20 5
19 18 18 8 21 19 18 17 21 9 21 17 13 21 1 11 21 17 1 17 11 21 12 10 21 4 19 14 21 21 3
17 4 18 22 7 8

Score: 4.894419

No of apartments: 26
No of circulation blocks: 40
Volume: 9216 m3
Total area: 2304 m2
Apartment area: 1664m2
Circulation area: 640 m2

Height: 64 m
Footprint: 28 m × 48 m

Appeared in generation: 695

No of apartments with balconies: 16
Percentage of apartments with balconies: 61.538464 %

Apartments with views to +i: 15
Apartments with views to -i: 10
Apartments with views to +j: 12
Apartments with views to -j: 12
Apartments with no views: 0

Champ No2

Shape code: 2 17 11 17 18 8 21 7 3 21 20 16 19 19 6 21 7 3 4 21 8 19 7 19 3 21 4 15 21 20
2 20 3 17 8 18 21 8 20 5 21 7 6 4 21 8 19 18 17 21 21 18 7 21 10 17 17 21 11 8 19 2 18 21

Score: 4.856903

No of apartments: 29
No of circulation blocks:37
Volume: 9792 m3
Total area: 2448 m2
Apartment area: 1856 m2
Circulation area: 592 m2

Height: 64 m
Footprint: 36 m × 40 m

Appeared in generation: 31

No of apartments with balconies: 15
Percentage of apartments with balconies: 51.724136 %

Apartments with views to +i: 21
Apartments with views to -i: 7
Apartments with views to +j: 13
Apartments with views to -j: 9
Apartments with no views: 0

Champ No3

Shape code: 14 5 21 18 17 16 18 21 3 8 19 21 19 3 21 20 2 5 21 18 21 4 19 22 19 18 22 19
21 18 14 21 6 17 17 21 17 17 3 8 21 20 11 21 17 11 15 17 21 14 16 21 15 19 3 21 7 21 17
18 12 21 20 11

Score: 4.856197

No of apartments: 23
No of circulation blocks: 43
Volume: 8640 m3
Total area: 2160 m2
Apartment area: 1472 m2
Circulation area: 688 m2

Height: 64 m
Footprint: 36 m × 40 m

Appeared in generation: 895

No of apartments with balconies: 13
Percentage of apartments with balconies: 56.521736 %

Apartments with views to +i: 18
Apartments with views to -i: 7
Apartments with views to +j: 15
Apartments with views to -j: 11
Apartments with no views: 0

 179

Multiple Criteria Population: 50 Set mutation rate: 0.5

 Actual mutation rate: 0.1176 Final average score: 4.1905 Time elapsed: 7543 s

Champ No1

Shape code: 3 12 21 19 2 20 4 20 19 21 16 20 21 17 12 21 7 21 7 20 20 10 21 15 4 21 14
21 18 19 1 19 3 2 21 18 6 18 18 18 19 18 15 17 21 6 4 21 12 19 3 21 4 15 3 21 4 7 21 8
20 14 20 4

Score: 4.976903

No of apartments: 29
No of circulation blocks: 37
Volume: 9792 m3
Total area: 2448 m2
Apartment area: 1856 m2
Circulation area: 592 m2

Height: 64 m
Footprint: 36 m × 52 m

Appeared in generation: 678

No of apartments with balconies: 17
Percentage of apartments with balconies: 58.620689 %

Apartments with views to +i: 19
Apartments with views to -i: 10
Apartments with views to +j: 6
Apartments with views to -j: 15
Apartments with no views: 0

Champ No2

Shape code: 2 12 21 19 1 20 4 20 19 21 16 18 21 17 12 21 7 21 7 20 20 10 21 15 4 21 14
21 18 19 1 19 3 2 21 18 18 18 18 18 19 18 15 17 21 15 4 21 12 19 10 21 4 15 3 21 4 7
21 8 20 14 20 4

Score: 4.973305

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 64 m
Footprint: 40 m × 56 m

Appeared in generation: 677

No of apartments with balconies: 15
Percentage of apartments with balconies: 53.571426 %

Apartments with views to +i: 20
Apartments with views to -i: 9
Apartments with views to +j: 6
Apartments with views to -j: 15
Apartments with no views: 0

Champ No3

Shape code: 15 21 21 16 20 21 20 22 20 21 20 4 22 22 4 18 19 19 14 21 18 18 16 21 14
20 21 12 21 4 21 3 15 21 13 19 18 21 18 7 19 21 2 17 16 21 6 15 4 21 5 19 6 21 11 15
21 13 18 18 12 21 7 3

Score: 4.928265

No of apartments: 26
No of circulation blocks: 40
Volume: 9216 m3
Total area: 2304 m2
Apartment area: 1664 m2
Circulation area: 640 m2

Height: 64 m
Footprint: 36 m × 44 m

Appeared in generation: 344

No of apartments with balconies: 16
Percentage of apartments with balconies: 61.538464 %

Apartments with views to +i: 19
Apartments with views to -i: 10
Apartments with views to +j: 12
Apartments with views to -j: 15
Apartments with no views: 0

 180

Multiple Criteria Population: 200 Set mutation rate: 0.005

 Actual mutation rate: 0.001 Final average score: 4.0889 Time elapsed: 8948 s

Champ No1

Shape code: 9 19 20 11 21 16 20 5 10 21 18 15 17 17 17 4 21 6 16 21 8 7 19 21 13 8 19 10
21 14 18 18 7 21 14 21 4 1 10 21 3 18 1 4 21 4 21 20 11 21 10 1 4 21 18 6 4 18 18 16 18
21 16 10

Score: 4.889483

No of apartments: 33
No of circulation blocks: 33
Volume: 10560 m3
Total area: 2640 m2
Apartment area: 2112 m2
Circulation area: 528 m2

Height: 64 m
Footprint: 28 m × 48 m

Appeared in generation: 135

No of apartments with balconies: 17
Percentage of apartments with balconies: 51.515152 %

Apartments with views to +i: 17
Apartments with views to -i: 11
Apartments with views to +j: 13
Apartments with views to -j: 13
Apartments with no views: 0

Champ No2

Shape code: 8 19 19 13 21 16 20 5 6 21 17 18 7 17 17 4 21 16 7 6 21 10 8 21 4 9 19 10 21
14 18 18 12 21 14 21 4 1 10 21 3 18 1 4 21 12 21 20 11 21 10 1 4 21 18 6 18 17 17 16 18
21 16 18

Score: 4.868701

No of apartments: 32
No of circulation blocks: 34
Volume: 10368 m3
Total area: 2592 m2
Apartment area: 2048 m2
Circulation area: 544 m2

Height: 64 m
Footprint: 32 m × 48 m

Appeared in generation: 212

No of apartments with balconies: 18
Percentage of apartments with balconies: 56.25 %

Apartments with views to +i: 17
Apartments with views to -i: 14
Apartments with views to +j: 13
Apartments with views to -j: 15
Apartments with no views: 0

Champ No3

Shape code: 20 19 19 13 21 16 20 5 6 21 17 18 7 17 17 4 21 16 7 6 21 10 8 21 4 9 19 10 21
14 18 18 12 21 14 21 4 1 10 21 3 18 1 4 21 12 21 20 11 21 10 1 4 21 18 6 18 17 17 16 18
21 16 18

Score: 4.858166

No of apartments: 31
No of circulation blocks: 35
Volume: 10176 m3
Total area: 2544 m2
Apartment area: 1984 m2
Circulation area: 560 m2

Height: 64 m
Footprint: 32 m × 48 m

Appeared in generation: 214

No of apartments with balconies: 18
Percentage of apartments with balconies: 58.064514 %

Apartments with views to +i: 16
Apartments with views to -i: 14
Apartments with views to +j: 12
Apartments with views to -j: 15
Apartments with no views: 0

 181

Multiple Criteria Population: 200 Set mutation rate: 0.01

 Actual mutation rate: 0.002 Final average score: 3.6234 Time elapsed: 10156 s

Champ No1

Shape code: 16 10 21 6 7 4 21 11 7 8 21 16 3 18 2 18 21 12 6 20 20 20 11 21 7 12 3 19 21 3
8 7 19 21 4 1 2 21 4 20 2 21 5 14 18 7 16 21 14 20 8 21 6 4 9 21 8 10 5 21 16 7 21 15

Score: 4.854313

No of apartments: 40
No of circulation blocks: 26
Volume: 11904 m3
Total area: 2976 m2
Apartment area: 2560 m2
Circulation area: 416 m2

Height: 64 m
Footprint: 28 m × 40 m

Appeared in generation: 10

No of apartments with balconies: 19
Percentage of apartments with balconies: 47.5 %

Apartments with views to +i: 19
Apartments with views to -i: 13
Apartments with views to +j: 17
Apartments with views to -j: 15
Apartments with no views: 0

Champ No2

Shape code: 16 10 21 6 7 4 21 11 7 8 21 16 3 18 2 18 21 12 6 20 20 20 11 21 7 12 3 19 21 3
8 7 19 21 4 1 2 21 4 20 2 21 5 14 18 7 16 21 14 20 8 21 6 4 9 21 8 10 5 21 21 1 20 4

Score: 4.82727

No of apartments: 39
No of circulation blocks: 27
Volume: 11712 m3
Total area: 2928 m2
Apartment area: 2496 m2
Circulation area: 432 m2

Height: 64 m
Footprint: 28 m × 44 m

Appeared in generation: 13

No of apartments with balconies: 17
Percentage of apartments with balconies: 43.589745 %

Apartments with views to +i: 18
Apartments with views to -i: 13
Apartments with views to +j: 15
Apartments with views to -j: 14
Apartments with no views: 0

Champ No3

Shape code: 16 10 21 6 7 4 21 11 7 8 21 16 3 18 2 18 21 12 6 20 20 20 11 21 7 12 3 19 21 3
8 7 19 21 4 1 2 21 4 20 2 21 5 14 18 7 16 21 14 20 8 21 6 4 9 21 8 10 5 21 16 3 18 21

Score: 4.812911

No of apartments: 39
No of circulation blocks: 27
Volume: 11712 m3
Total area: 2928 m2
Apartment area: 2496 m2
Circulation area: 432 m2

Height: 64 m
Footprint: 28 m × 40 m

Appeared in generation: 9

No of apartments with balconies: 18
Percentage of apartments with balconies: 46.153847 %

Apartments with views to +i: 18
Apartments with views to -i: 12
Apartments with views to +j: 17
Apartments with views to -j: 13
Apartments with no views: 0

 182

Multiple Criteria Population: 200 Set mutation rate: 0.05

 Actual mutation rate: 0.0121 Final average score: 4.0189 Time elapsed: 11411 s

Champ No1

Shape code: 16 7 21 20 17 12 21 3 7 19 21 8 20 20 3 21 12 18 18 19 18 18 21 10 18 22 22
18 7 8 21 17 8 7 21 7 12 21 19 7 21 9 11 21 8 21 2 17 1 5 21 14 8 21 10 8 21 3 2 21 17 4
15 21

Score: 4.981568

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 64 m
Footprint: 32 m × 48 m

Appeared in generation: 189

No of apartments with balconies: 17
Percentage of apartments with balconies: 56.666668 %

Apartments with views to +i: 20
Apartments with views to -i: 8
Apartments with views to +j: 13
Apartments with views to -j: 12
Apartments with no views: 0

Champ No2

Shape code: 3 18 10 1 21 15 19 21 6 4 21 20 16 20 19 13 18 21 17 17 5 7 21 2 11 17 17
18 21 12 2 21 4 20 20 14 20 21 20 14 8 21 7 6 4 20 21 17 1 11 21 8 10 21 20 14 21 3 9
21 6 17 7 4

Score: 4.91494

No of apartments: 31
No of circulation blocks: 35
Volume: 10176 m3
Total area: 2544 m2
Apartment area: 1984 m2
Circulation area: 560 m2

Height: 64 m
Footprint: 40 m × 52 m

Appeared in generation: 98

No of apartments with balconies: 20
Percentage of apartments with balconies: 64.516129 %

Apartments with views to +i: 17
Apartments with views to -i: 14
Apartments with views to +j: 11
Apartments with views to -j: 17
Apartments with no views: 0

Champ No3

Shape code: 18 8 21 20 10 12 21 6 20 4 21 18 4 18 19 19 2 21 6 5 8 7 21 2 4 18 17 8 21 4
19 21 20 20 21 14 20 21 12 2 21 1 20 14 12 20 21 15 3 19 21 4 20 19 7 6 21 8 18 21 3 4
7 19

Score: 4.914902

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 64 m
Footprint: 36 m × 52 m

Appeared in generation: 129

No of apartments with balconies: 18
Percentage of apartments with balconies: 60.000004 %

Apartments with views to +i: 17
Apartments with views to -i: 10
Apartments with views to +j: 11
Apartments with views to -j: 15
Apartments with no views: 0

 183

Multiple Criteria Population: 200 Set mutation rate: 0.1

 Actual mutation rate: 0.0247 Final average score: 4.0305 Time elapsed: 13318 s

Champ No1

Shape code: 19 11 18 9 21 19 18 8 18 2 21 13 8 21 7 21 14 17 8 20 21 7 20 8 3 19 22 20
20 20 14 16 21 5 7 21 7 11 21 16 21 14 5 21 4 21 1 14 20 21 17 15 22 20 21 4 6 21 8 21
7 21 17 3

Score: 4.968235

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 64 m
Footprint: 28 m × 56 m

Appeared in generation: 730

No of apartments with balconies: 14
Percentage of apartments with balconies: 46.666668 %

Apartments with views to +i: 19
Apartments with views to -i: 10
Apartments with views to +j: 11
Apartments with views to -j: 13
Apartments with no views: 0

Champ No2

Shape code: 19 11 18 18 21 19 18 8 18 2 21 3 8 21 7 21 14 17 20 20 21 7 20 8 3 19 22 20
20 20 14 16 21 5 7 21 7 11 21 19 21 14 5 21 4 21 1 14 20 21 17 15 22 20 21 4 19 14 21
14 17 21 19 10

Score: 4.94299

No of apartments: 26
No of circulation blocks: 40
Volume: 9216 m3
Total area: 2304 m2
Apartment area: 1664 m2
Circulation area: 640 m2

Height: 60 m
Footprint: 28 m × 60 m

Appeared in generation: 728

No of apartments with balconies: 13
Percentage of apartments with balconies: 50 %

Apartments with views to +i: 18
Apartments with views to -i: 9
Apartments with views to +j: 9
Apartments with views to -j: 11
Apartments with no views: 0

Champ No3

Shape code: 14 12 21 7 20 11 21 4 19 19 3 7 21 7 11 21 13 18 16 18 21 20 17 16 3 21 11
19 1 21 13 18 21 11 2 18 18 21 3 15 17 21 5 18 6 16 21 2 16 21 12 3 2 21 8 21 20 10 20
3 8 22 19 10

Score: 4.940392

No of apartments: 33
No of circulation blocks: 33
Volume: 10560 m3
Total area: 2640 m2
Apartment area: 2112 m2
Circulation area: 528 m2

Height: 64 m
Footprint: 32 m × 48 m

Appeared in generation: 121

No of apartments with balconies: 17
Percentage of apartments with balconies: 51.515152 %

Apartments with views to +i: 20
Apartments with views to -i: 11
Apartments with views to +j: 18
Apartments with views to -j: 15
Apartments with no views: 0

 184

Multiple Criteria Population: 200 Set mutation rate: 0.5

 Actual mutation rate: 0.1251 Final average score: 4.0015 Time elapsed: 23608 s

Champ No1

Shape code: 10 21 8 20 4 21 4 6 21 18 2 12 21 17 3 18 9 21 3 1 21 13 21 16 7 3 21 17 21
15 21 14 21 9 17 4 20 21 10 16 21 3 21 2 18 18 22 10 18 18 15 22 8 19 7 3 22 19 18 17
12 18 19 7

Score: 4.988235

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 64 m
Footprint: 28 m × 48 m

Appeared in generation: 898

No of apartments with balconies: 17
Percentage of apartments with balconies: 56.666668 %

Apartments with views to +i: 19
Apartments with views to -i: 11
Apartments with views to +j: 14
Apartments with views to -j: 13
Apartments with no views: 0

Champ No2

Shape code: 19 10 21 18 10 8 21 1 5 21 7 4 19 21 21 3 2 21 5 19 14 21 2 21 10 21 21 17
11 21 20 21 14 8 20 22 20 8 22 22 20 8 22 20 21 20 20 21 13 2 8 21 5 21 10 8 21 20 11 8
19 21 2 1

Score: 4.941876

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 64 m
Footprint: 32 m × 52 m

Appeared in generation: 497

No of apartments with balconies: 17
Percentage of apartments with balconies: 60.714287 %

Apartments with views to +i: 16
Apartments with views to -i: 14
Apartments with views to +j: 15
Apartments with views to -j: 7
Apartments with no views: 0

Champ No3

Shape code: 18 16 2 21 19 1 21 7 6 21 16 21 3 17 21 18 12 19 19 11 21 17 17 13 21 21 19
14 21 15 21 14 20 16 21 3 18 8 10 21 6 12 21 1 20 20 12 10 21 16 20 20 20 12 22 22 15
20 12 20 21 11 21 3

Score: 4.941876

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 64 m
Footprint: 28 m × 48 m

Appeared in generation: 189

No of apartments with balconies: 15
Percentage of apartments with balconies: 53.571426 %

Apartments with views to +i: 18
Apartments with views to -i: 13
Apartments with views to +j: 12
Apartments with views to -j: 9
Apartments with no views: 0

 185

Multiple Criteria Population: 500 Set mutation rate: 0.005

 Actual mutation rate: 0.0011 Final average score: 3.8737 Time elapsed: 23807 s

Champ No1

Shape code: 13 17 8 18 7 21 3 18 15 21 13 18 15 21 7 4 20 21 13 19 1 21 11 7 21 6 18 21 4
2 1 21 9 17 21 21 3 8 18 19 21 4 20 21 16 20 3 19 21 14 21 1 2 20 20 12 22 4 20 20 20 21
4 20

Score: 5.02242

No of apartments: 29
No of circulation blocks: 37
Volume: 9792m3
Total area: 2448 m2
Apartment area: 1856 m2
Circulation area: 592 m2

Height: 64 m
Footprint: 28 m × 52 m

Appeared in generation: 235

No of apartments with balconies: 17
Percentage of apartments with balconies: 58.620689 %

Apartments with views to +i: 18
Apartments with views to -i: 9
Apartments with views to +j: 13
Apartments with views to -j: 15
Apartments with no views: 0

Champ No2

Shape code: 18 6 8 18 7 21 3 15 21 19 13 18 15 21 4 21 7 12 6 20 20 21 4 7 21 6 15 4 21 14
16 21 9 4 21 4 18 8 18 19 21 4 2 21 21 11 1 19 21 10 21 1 20 20 20 16 22 4 20 20 20 19 21
12

Score: 5.002682

No of apartments: 31
No of circulation blocks:35
Volume: 10176 m3
Total area: 2544 m2
Apartment area: 1984 m2
Circulation area: 560 m2

Height: 64 m
Footprint: 24 m × 48 m

Appeared in generation: 357

No of apartments with balconies: 16
Percentage of apartments with balconies: 51.6129 %

Apartments with views to +i: 20
Apartments with views to -i: 12
Apartments with views to +j: 9
Apartments with views to -j: 15
Apartments with no views: 0

Champ No3

Shape code: 18 17 8 18 7 21 3 15 21 19 13 18 15 21 4 21 7 12 6 20 20 21 11 7 21 6 15 4 21
14 16 21 9 4 21 4 18 8 18 19 21 4 2 21 21 11 1 19 21 10 21 1 20 20 20 16 22 4 20 20 20 13
21 10

Score: 4.962682

No of apartments: 31
No of circulation blocks: 35
Volume: 10176 m3
Total area: 2544 m2
Apartment area: 1984 m2
Circulation area: 560m2

Height: 64 m
Footprint: 24 m × 44 m

Appeared in generation: 346

No of apartments with balconies: 16
Percentage of apartments with balconies: 51.6129 %

Apartments with views to +i: 20
Apartments with views to -i: 11
Apartments with views to +j: 12
Apartments with views to -j: 15
Apartments with no views: 0

 186

Multiple Criteria Population: 500 Set mutation rate: 0.01

 Actual mutation rate: 0.0022 Final average score: 4.209 Time elapsed: 25277 s

Champ No1

Shape code: 12 19 6 15 21 15 4 21 9 20 17 3 21 16 19 3 2 21 4 19 21 11 21 2 1 17 13
21 12 10 21 16 21 16 21 20 4 21 2 3 18 18 18 18 22 19 22 1 19 19 18 21 9 21 6 18
16 21 18 21 16 21 15 19

Score: 4.941876

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 64 m
Footprint: 32 m × 52 m

Appeared in generation: 854

No of apartments with balconies: 18
Percentage of apartments with balconies: 64.285713
%

Apartments with views to +i: 15
Apartments with views to -i: 12
Apartments with views to +j: 13
Apartments with views to -j: 13
Apartments with no views: 0

Champ No2

Shape code: 12 19 3 18 21 18 10 21 20 16 21 14 20 20 20 5 22 6 20 5 17 22 12 6 18 7
21 17 21 21 16 20 5 10 21 3 8 18 21 7 11 21 7 12 21 7 17 16 21 14 8 21 3 21 10 18
16 21 10 21 21 11 18 22

Score: 4.862421

No of apartments: 29
No of circulation blocks: 37
Volume: 9792 m3
Total area: 2448 m2
Apartment area: 1856 m2
Circulation area: 592m2

Height: 64 m
Footprint: 36 m × 44 m

Appeared in generation: 598

No of apartments with balconies: 17
Percentage of apartments with balconies: 58.620689
%

Apartments with views to +i: 18
Apartments with views to -i:11
Apartments with views to +j: 15
Apartments with views to -j: 12
Apartments with no views: 0

Champ No3

Shape code: 12 19 6 15 21 15 4 21 9 20 17 3 21 16 19 3 2 21 4 19 21 11 21 2 1 17 13
21 12 10 21 16 21 16 21 20 4 21 2 3 18 18 18 18 22 19 22 1 19 19 18 21 9 21 6 18
16 21 15 21 19 21 15 19

Score: 4.861876

No of apartments: 28
No of circulation blocks: 38
Volume: 9600m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608m2

Height: 64 m
Footprint: 36 m × 48 m

Appeared in generation: 853

No of apartments with balconies: 18
Percentage of apartments with balconies: 64.285713
%

Apartments with views to +i: 15
Apartments with views to -i: 11
Apartments with views to +j: 13
Apartments with views to -j: 14
Apartments with no views: 0

 187

Multiple Criteria Population: 500 Set mutation rate: 0.05

 Actual mutation rate: 0.013 Final average score: 4.1029 Time elapsed: 27186 s

Champ No1

Shape code: 16 21 6 12 21 11 7 21 7 21 21 18 15 21 4 3 7 21 21 2 11 21 4 19 14 21 6 12
21 4 21 5 21 21 11 17 7 17 22 12 19 3 18 2 18 22 3 22 18 22 14 22 11 18 22 7 17 20 4 22
16 7 22 18

Score: 5.048235

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 64 m
Footprint: 24 m × 40 m

Appeared in generation: 515

No of apartments with balconies: 17
Percentage of apartments with balconies: 56.666668 %

Apartments with views to +i: 22
Apartments with views to -i: 10
Apartments with views to +j: 9
Apartments with views to -j: 15
Apartments with no views: 0

Champ No2

Shape code: 15 21 18 4 21 8 3 21 12 21 15 11 17 21 21 13 17 21 21 20 19 21 15 21 15 11
19 21 4 14 21 10 21 21 2 17 18 8 22 12 22 18 18 8 14 22 12 18 7 22 17 1 22 12 22 8 20 2
11 17 22 11 22 8

Score: 5.036162

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 64 m
Footprint: 36 m × 44 m

Appeared in generation: 557

No of apartments with balconies: 17
Percentage of apartments with balconies: 60.714287 %

Apartments with views to +i: 22
Apartments with views to -i: 10
Apartments with views to +j: 14
Apartments with views to -j: 12
Apartments with no views: 0

Champ No3

Shape code: 11 18 15 19 19 21 21 11 17 15 22 17 16 3 21 21 8 21 3 21 15 21 1 4 20 21 4
14 20 21 15 21 12 21 4 19 18 19 7 22 20 8 20 19 20 10 21 5 17 21 8 5 21 20 6 20 5 8 21
8 21 18 7 4

Score: 5.004734

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 64 m
Footprint: 36 m × 48 m

Appeared in generation: 304

No of apartments with balconies: 16
Percentage of apartments with balconies: 57.142860 %

Apartments with views to +i: 21
Apartments with views to -i: 6
Apartments with views to +j: 14
Apartments with views to -j: 13
Apartments with no views: 0

 188

Multiple Criteria Population: 500 Set mutation rate: 0.1

 Actual mutation rate: 0.0259 Final average score: 4.0988 Time elapsed: 28887 s

Champ No1

Shape code: 21 6 9 21 5 21 7 20 17 8 21 12 20 6 21 17 8 21 11 15 21 16 18 10 21 15 3 21 9
21 15 17 21 12 21 11 21 19 18 19 15 22 8 7 22 4 14 18 18 18 22 22 8 14 22 3 19 22 2 8
22 16 22 11

Score: 4.976807

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 60 m
Footprint: 32 m × 48 m

Appeared in generation: 470

No of apartments with balconies: 21
Percentage of apartments with balconies: 70 %

Apartments with views to +i: 18
Apartments with views to -i: 12
Apartments with views to +j: 11
Apartments with views to -j: 15
Apartments with no views: 0

Champ No2

Shape code: 17 12 21 16 19 11 21 7 17 8 3 21 18 12 18 19 21 4 19 2 20 21 20 4 21 8 21 17
13 18 7 21 15 19 21 8 6 21 20 20 20 10 8 20 20 17 11 22 7 8 19 19 5 21 21 10 17 20 21 1
21 4 21 4

Score: 4.975957

No of apartments: 26
No of circulation blocks: 40
Volume: 9216 m3
Total area: 2304 m2
Apartment area: 1664 m2
Circulation area: 640 m2

Height: 64 m
Footprint: 24 m × 56 m

Appeared in generation: 237

No of apartments with balconies: 15
Percentage of apartments with balconies: 57.692307 %

Apartments with views to +i: 16
Apartments with views to -i: 8
Apartments with views to +j: 11
Apartments with views to -j:12
Apartments with no views: 1

Champ No3

Shape code: 15 20 12 21 12 18 21 12 7 21 2 12 21 10 8 21 4 18 18 21 18 18 7 4 22 15 19
13 21 19 21 9 11 21 8 2 20 6 20 20 20 22 20 12 19 6 21 17 13 8 21 11 21 21 14 20 16 21
20 16 21 12 21 17

Score: 4.950448

No of apartments: 28
No of circulation blocks: 38
Volume: 9600 m3
Total area: 2400 m2
Apartment area: 1792 m2
Circulation area: 608 m2

Height: 64 m
Footprint: 24 m × 52 m

Appeared in generation: 542

No of apartments with balconies: 12
Percentage of apartments with balconies: 42.857143 %

Apartments with views to +i: 19
Apartments with views to -i: 11
Apartments with views to +j: 8
Apartments with views to -j: 12
Apartments with no views: 0

 189

Multiple Criteria Population: 500 Set mutation rate: 0.5

 Actual mutation rate: 0.1247 Final average score: 4.0945 Time elapsed: 34515 s

Champ No1

Shape code: 6 21 21 6 17 18 18 2 17 21 2 20 4 20 21 21 16 21 18 4 21 3 17 4 15 21 14 20 20
20 11 21 10 21 12 19 21 20 20 12 21 19 15 21 8 19 20 21 15 20 12 22 19 10 22 17 11 22 17
22 19 14 22 18

Score: 5.011373

No of apartments: 22
No of circulation blocks: 44
Volume: 8448 m3
Total area: 2112 m2
Apartment area: 1408 m2
Circulation area: 704 m2

Height: 64 m
Footprint: 28 m × 56 m

Appeared in generation: 610

No of apartments with balconies: 12
Percentage of apartments with balconies: 54.545456 %

Apartments with views to +i: 17
Apartments with views to -i: 10
Apartments with views to +j: 8
Apartments with views to -j: 12
Apartments with no views: 0

Champ No2

Shape code: 16 18 18 21 5 8 19 21 17 16 21 7 17 21 12 3 21 4 21 18 16 21 18 12 14 21 3 8 2
21 4 14 18 7 21 20 20 4 2 21 7 21 21 2 20 21 20 20 20 20 20 22 20 8 13 19 22 6 16 22 19 5
18 10

Score: 4.982745

No of apartments: 27
No of circulation blocks: 39
Volume: 9408 m3
Total area: 2352 m2
Apartment area: 1728 m2
Circulation area: 624 m2

Height: 64 m
Footprint: 28 m × 60 m

Appeared in generation: 255

No of apartments with balconies: 15
Percentage of apartments with balconies: 55.555557 %

Apartments with views to +i: 16
Apartments with views to -i: 13
Apartments with views to +j: 12
Apartments with views to -j: 10
Apartments with no views: 0

Champ No3

Shape code: 17 17 11 1 21 15 13 21 18 14 21 15 13 21 7 20 12 20 21 12 14 21 8 6 21 4 18 21
4 21 8 21 13 21 3 17 21 18 17 15 20 13 21 21 6 4 18 18 16 22 3 18 16 22 8 22 19 11 15 22
4 18 15 19

Score: 4.974902

No of apartments: 30
No of circulation blocks: 36
Volume: 9984 m3
Total area: 2496 m2
Apartment area: 1920 m2
Circulation area: 576 m2

Height: 64 m
Footprint: 32 m × 44 m

Appeared in generation: 660

No of apartments with balconies: 16
Percentage of apartments with balconies: 53.333336 %

Apartments with views to +i: 22
Apartments with views to -i: 9
Apartments with views to +j: 10
Apartments with views to -j: 14
Apartments with no views: 0

 190

Appendix E
Shape Evolution Source Code

The C++ source code for the Shape Evolution prototype is included here for
reference. This is working code and includes redundancies and debugging routines
used to facilitate the development of the programme. The source code has been
colour-coded to aid comprehensibility: comments are rendered in grey, strings are
lime green, numbers are blue, keywords are orange, and preprocessor commands
are pink.

 191

#include <iostream.h>
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#include <assert.h>

// attempt to load configuration from file (only works after recompile)
// #include "config.cfg"

//#include "arrays.cpp"

// rounding up or down command

#define round(x) ((int)((x)<0?ceil((x)-0.5):floor((x)+0.5)))

// Array classes

// Single dimensional array

template <class T>
class array1D
{
protected:
 T * buffer;
 unsigned int s1;

public:
 array1D (const unsigned int num_elements) {
 assert (num_elements > 0);
 s1 = num_elements;
 buffer = new T [num_elements];
 }

 ~array1D () { delete buffer; }

 inline const T & get (const unsigned int i1) {
 assert (i1 < s1);
 return buffer [i1];
 }

 inline void set (const unsigned int i1, const T & value) {
 assert (i1 < s1);
 buffer [i1] = value;
 }
};

// 2D array

// Modus operandi for N-dimensional arrays: allocate a flat (1D) array, then
// convert indices (i1, i2, ..., iN) from N-tuples to an 1D array 'flat'
index
// i. For the trivial case, N=1, the index and flat index coincide, so i=i1.
//
// For the first non-trivial case, N=2, given an array of s1 x s2 elements,
// location (i1,i2) is mapped to flat index i = i1 + s1 i2. Intuitively,
// rows/columns are converted to left-to-right-then-top-to-bottom cell
numbers.
//
// For the general case, given an array of s1 x s2 x ... x sN elements, the
// mapping between elements and flat indices is defined by a recurrence
// relation, each iteration of which augments the space by one dimension.
//
// f (1, (i1), (s1)) = i1
// f (2, (i1,i2), (s1,s2)) = i1 + s1 * i2 = f (1, (i1), (s1)) + s1 * i2
// ...

 192

// f (N, (i1,i2,...,iN), (s1,s2,...,sN) =
// = f (N-1, (i1,i2,...,i{N-1}), (s1,s2,...,s{N-1}))
+
// + s1 s2 ... s{N-1} iN

// 2D: i = i1 + s1 * i2;

template <class T>
class array2D
{
 public:
 T * buffer;
 unsigned int s1, s2;

 array2D (const unsigned int n1,
 const unsigned int n2) {
 assert (n1 > 0);
 assert (n2 > 0);
 s1 = n1;
 s2 = n2;
 buffer = new T [n1 * n2];
 }

 ~array2D () { delete buffer; }

 inline const T & get (const unsigned int i1,
 const unsigned int i2) {
 assert (i1 < s1);
 assert (i2 < s2);
 return buffer [i1 + s1 * i2];
 }

 inline void set (const unsigned int i1,
 const unsigned int i2,
 const T & value) {
 assert (i1 < s1);
 assert (i2 < s2);
 buffer [i1 + s1 * i2] = value;
 }
};

// 3D: i = i1 + s1 * i2 + s1 * s2 * i3;

template <class T>
class array3D
{
 public:
 T * buffer;
 unsigned int s1, s2, s3;

 array3D (const unsigned int n1,
 const unsigned int n2,
 const unsigned int n3) {
 assert (n1 > 0);
 assert (n2 > 0);
 assert (n3 > 0);
 s1 = n1;
 s2 = n2;
 s3 = n3;
 buffer = new T [n1 * n2 * n3];
 }

 ~array3D () { delete buffer; }

 inline const T & get (const unsigned int i1,
 const unsigned int i2,

 193

 const unsigned int i3) {
 assert (i1 < s1);
 assert (i2 < s2);
 assert (i3 < s3);
 return buffer [i1 + s1 * i2 + s1 * s2 * i3];
 }

 inline void set (const unsigned int i1,
 const unsigned int i2,
 const unsigned int i3,
 const T & value) {
 assert (i1 < s1);
 assert (i2 < s2);
 assert (i3 < s3);
 buffer [i1 + s1 * i2 + s1 * s2 * i3] = value;
 }
};

// 4D: i = i1 + s1 * i2 + s1 * s2 * i3 + s1 * s2 * s3 * i4;

template <class T>
class array4D
{
public:
 T * buffer;
 unsigned int s1, s2, s3, s4;

 array4D (const unsigned int n1,
 const unsigned int n2,
 const unsigned int n3,
 const unsigned int n4) {
 assert (n1 > 0);
 assert (n2 > 0);
 assert (n3 > 0);
 assert (n4 > 0);
 s1 = n1;
 s2 = n2;
 s3 = n3;
 s4 = n4;
 buffer = new T [n1 * n2 * n3 * n4];
 }

 ~array4D () { delete buffer; }

 inline const T & get (const unsigned int i1,
 const unsigned int i2,
 const unsigned int i3,
 const unsigned int i4) {
 assert (i1 < s1);
 assert (i2 < s2);
 assert (i3 < s3);
 assert (i4 < s4);
 return buffer [i1 +
 s1 * i2 +
 s1 * s2 * i3 +
 s1 * s2 * s3 * i4];
 }

 inline void set (const unsigned int i1,
 const unsigned int i2,
 const unsigned int i3,
 const unsigned int i4,
 const T & value) {
 assert (i1 < s1);
 assert (i2 < s2);
 assert (i3 < s3);

 194

 assert (i4 < s4);
 buffer [i1 +
 s1 * i2 +
 s1 * s2 * i3 +
 s1 * s2 * s3 * i4] = value;
 }
};

// GA-related globals
//int population=100;
//int *indivArray;
//int *indivShapeCode;

//globals initialised with values from file
int iterations;
int population;
int generations;
float sufficientscore;
float mutationrate;

int deltatee;

int *shapeCode;
float *indivScore;

float *avScoreMonitor;
float *bestScoreMonitor;

int *sorted;

// variables for keeping champion information
int champPool; // number of champions
array2D<int> * champCode;
array4D<int> * champArray;
// int champArray[16][16][16];
// float champScore=0;
float *champScore;
int *champGen;

int *intermediate;

int *xoverStack;
int *xshuffle;

float maxScore;

float avScore;
float *fitness;

 195

int mutacounter=0;

// int *indivArray;
// int *indivShapeCode;

array2D<int> * indivShapeCode;
//array2D<int> * xoverShapeCode;
array4D<int> * indivArray;

// initialising globals
int i,j,k;
int array[16][16][16];
int markeri,markerj,markerk;

int a,b;
int selectRule;
int flatRule[4][3];
int circRule[3];

//iterations is the number of rules to apply
//int iterations=12;
int iter;

//set size of shapeCode equal to iterations
//int shapeCode[32];

int stack[22];
int stackmark;

//basic evaluation variables
int volume;
int circarea;
int totalarea;
int flatarea;
int flatno;
int circno;

//balcony variables
int balcno;

//views variables
int foo;
int viewsip=0;
int viewsim=0;
int viewsjp=0;
int viewsjm=0;
int noviews=0;

// evalextents variables
int kmaxextent=-1;
int iminextent=-1;
int imaxextent=-1;
int jminextent=-1;
int jmaxextent=-1;

// scoring variables

//int goalcircno;
float goalflatno;
float goalbalcno;
int goalheight;
int goalfooti;
int goalfootj;
float goalviewsip;
float goalviewsjp;
float goalviewsim;
float goalviewsjm;

 196

float goalnoviews;

float wtcircno;
float wtflatno;
float wtbalcno;
float wtheight;
float wtfooti;
float wtfootj;
float wtviewsip;
float wtviewsjp;
float wtviewsim;
float wtviewsjm;
float wtnoviews;

// intialising rule matrices
int rule[22][4][3] = { {
 {0,-1,0},
 {1,-1,0},
 {2,-1,0},
 {3,-1,0}
},
{
 {-1,0,0},
 {-1,-1,0},
 {-1,-2,0},
 {-1,-3,0}
},
{
 {0,1,0},
 {-1,1,0},
 {-2,1,0},
 {-3,1,0}
},
{
 {1,0,0},
 {1,1,0},
 {1,2,0},
 {1,3,0}
},
{
 {0,1,0},
 {1,1,0},
 {2,1,0},
 {3,1,0}
},
{
 {-1,0,0},
 {-1,1,0},
 {-1,2,0},
 {-1,3,0}
},
{
 {0,-1,0},
 {-1,-1,0},
 {-2,-1,0},
 {-3,-1,0}
},
{
 {1,0,0},
 {1,-1,0},
 {1,-2,0},
 {1,-3,0}
},
{
 {-1,-1,0},
 {0,-1,0},
 {1,-1,0},
 {2,-1,0}

 197

},
{
 {-1,1,0},
 {-1,0,0},
 {-1,-1,0},
 {-1,-2,0}
},
{
 {1,1,0},
 {0,1,0},
 {-1,1,0},
 {-2,1,0}
},
{
 {1,-1,0},
 {1,0,0},
 {1,1,0},
 {1,2,0}
},
{
 {-1,1,0},
 {0,1,0},
 {1,1,0},
 {2,1,0}
},
{
 {-1,-1,0},
 {-1,0,0},
 {-1,1,0},
 {-1,2,0}
},
{
 {1,-1,0},
 {0,-1,0},
 {-1,-1,0},
 {-2,-1,0}
},
{
 {1,1,0},
 {1,0,0},
 {1,-1,0},
 {1,-2,0}
},
{
 {1,0,0},
 {0,0,0},
 {0,0,0},
 {0,0,0}
},
{
 {0,-1,0},
 {0,0,0},
 {0,0,0},
 {0,0,0}
},
{
 {-1,0,0},
 {0,0,0},
 {0,0,0},
 {0,0,0}
},
{
 {0,1,0},
 {0,0,0},
 {0,0,0},
 {0,0,0}
},
{

 198

 {0,0,1},
 {0,0,0},
 {0,0,0},
 {0,0,0}
},
{
 {0,0,-1},
 {0,0,0},
 {0,0,0},
 {0,0,0}
} };

// initialising functions
int txtview();
int txtexport();
int vrmlexport();
int generate();

int applyflatrule();
int applycircrule();

int fileinput() {

// int inputvalues[2];

 FILE *inputfile;

 inputfile = fopen("input.txt","r");
 if (!inputfile) { return -1; cout << "File not found.\n"; }

// for (i=0;i<=1;i++) fscanf(inputfile, "%d", &inputvalues[i]);

 fscanf(inputfile, "%d", &population);
 fscanf(inputfile, "%d", &iterations);
 fscanf(inputfile, "%d", &generations);
 fscanf(inputfile, "%f", &sufficientscore);
 fscanf(inputfile, "%f", &mutationrate);

 fscanf(inputfile, "%d", &champPool);

 fscanf(inputfile, "%f", &goalflatno);
 fscanf(inputfile, "%f", &goalbalcno);
 fscanf(inputfile, "%d", &goalheight);
 fscanf(inputfile, "%d", &goalfooti);
 fscanf(inputfile, "%d", &goalfootj);
 fscanf(inputfile, "%f", &goalviewsip);
 fscanf(inputfile, "%f", &goalviewsim);
 fscanf(inputfile, "%f", &goalviewsjp);
 fscanf(inputfile, "%f", &goalviewsjm);
 fscanf(inputfile, "%f", &goalnoviews);

 fscanf(inputfile, "%f", &wtflatno);
 fscanf(inputfile, "%f", &wtbalcno);
 fscanf(inputfile, "%f", &wtheight);
 fscanf(inputfile, "%f", &wtfooti);
 fscanf(inputfile, "%f", &wtfootj);
 fscanf(inputfile, "%f", &wtviewsip);
 fscanf(inputfile, "%f", &wtviewsim);
 fscanf(inputfile, "%f", &wtviewsjp);
 fscanf(inputfile, "%f", &wtviewsjm);
 fscanf(inputfile, "%f", &wtnoviews);

// iterations = inputvalues[0];
// population = inputvalues[1];

 199

 shapeCode = new int[iterations];

// champCode = new int[iterations];

 champScore = new float[champPool];
 champGen = new int[champPool];

 champCode = new array2D<int> (champPool, iterations);
 champArray = new array4D<int> (champPool, 16, 16, 16);

// indivArray = (int*) new int[population][16][16][16];
// indivShapeCode = (int*) new int[population][iterations];
 indivScore = new float[population];

 fitness = new float[population];

 sorted = new int[population];

 intermediate = new int[population];

 xoverStack = new int[iterations-1];
 xshuffle = new int[population];

 avScoreMonitor = new float[generations];
 bestScoreMonitor = new float[generations];

 indivShapeCode = new array2D<int> (population*2, iterations);
 //xoverShapeCode = new array2D<int> (population, iterations);
 indivArray = new array4D<int> (population*2, 16, 16, 16);

 return 0;

}

int sortcompare (const void *theone, const void *theother)
{
 int theonei = * (int *) theone;
 int theotheri = * (int *) theother;

 // This comparison scheme looks up the ordering map and accesses the
 // fitness_array. The side effect is that, at the end of the qsort()
call, the
 // order array contains indices that can be used to access arrays in
order of
 // *DECREASING* fitness.

 if (indivScore[theotheri] < indivScore[theonei]) return -1;
 else if (indivScore[theotheri] > indivScore[theonei]) return 1;
 else return 0;
}

int sortpop() {

 int alan;

// This initialises the sorted array with sorted[x]=x

 for (alan=0;alan<=population;alan++) {
 sorted[alan]=alan;
 }

 200

 qsort (sorted, population, sizeof (int), sortcompare);

 return 1;

}

int clearonearray(int clearmember) {

 // initialises array 'clearmember' with zeros

 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 for (k=0;k<=15;k++)
 {
 indivArray->set(clearmember,i,j,k,0);
 }
 }
 }

 return 1;

}

int embryogenesis(int genmember) {

 int itercounter;

 clearonearray(genmember);

 indivArray->set(genmember,7,7,0,1);
 indivArray->set(genmember,7,7,1,1);

 markeri=7;
 markerj=7;
 markerk=1;

 for (itercounter=0;itercounter<=iterations-1;itercounter++) {

 if ((indivShapeCode-
>get(genmember,itercounter)>=1)&&(indivShapeCode-
>get(genmember,itercounter)<=16)) {
 //apply flat rule

 // make sure the rule does not try to exceed limits

 if (
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][0][0]>15)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][0][1]>15)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2]>15)||

 201

 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][1][0]>15)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][1][1]>15)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][1][2]>15)||
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][2][0]>15)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][2][1]>15)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][2][2]>15)||
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][3][0]>15)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][3][1]>15)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][3][2]>15)||
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][0][0]<0)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][0][1]<0)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2]<1)||
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][1][0]<0)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][1][1]<0)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][1][2]<1)||
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][2][0]<0)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][2][1]<0)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][2][2]<1)||
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][3][0]<0)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][3][1]<0)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][3][2]<1)) {
 // cout << "Rule would exceed limits; not applied.\n";
 return -2;
 }

 // check for validity of rule application
 // make sure the rule puts new blocks in empty spaces

 if (!(
 (indivArray->get(genmember,
 markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][0][0],
 markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][0][1],
 markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2])==0)&&
 (indivArray->get(genmember,
 markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][1][0],
 markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][1][1],
 markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][1][2])==0)&&
 (indivArray->get(genmember,
 markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][2][0],

 202

 markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][2][1],
 markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][2][2])==0)&&
 (indivArray->get(genmember,
 markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][3][0],
 markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][3][1],
 markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][3][2])==0))) {
 // cout << "Rule would overlap; not applied.\n";
 return -1;
 }

 indivArray->set(genmember,
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-1][0][0]),
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-1][0][1]),
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2]),2);

 indivArray->set(genmember,
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-1][1][0]),
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-1][1][1]),
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][1][2]),3);

 indivArray->set(genmember,
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-1][2][0]),
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-1][2][1]),
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][2][2]),4);

 indivArray->set(genmember,
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-1][3][0]),
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-1][3][1]),
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][3][2]),5);

 // cout << "#";

 }

 if ((indivShapeCode-
>get(genmember,itercounter)>=17)&&(indivShapeCode-
>get(genmember,itercounter)<=22)) {

 // check for validity

 if ((markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][0][0]>15)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][0][1]>15)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2]>15)||
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][0][0]<0)||
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][0][1]<0)||
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2]<1)) {
 // cout << "Rule would exceed limits; not applied.\n";
 return -4;
 }

 203

 if (!(indivArray->get(genmember,
 markeri+rule[indivShapeCode->get(genmember,itercounter)-
1][0][0],
 markerj+rule[indivShapeCode->get(genmember,itercounter)-
1][0][1],
 markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2])==0))
 {
 // cout << "Rule would overlap; not applied.\n";
 return -3;
 }

 //apply circ rule
 indivArray->set(genmember,
 (markeri+rule[indivShapeCode->get(genmember,itercounter)-1][0][0]),
 (markerj+rule[indivShapeCode->get(genmember,itercounter)-1][0][1]),
 (markerk+rule[indivShapeCode->get(genmember,itercounter)-
1][0][2]),1);

 //move markers
 markeri += rule[indivShapeCode->get(genmember,itercounter)-1][0][0];
 markerj += rule[indivShapeCode->get(genmember,itercounter)-1][0][1];
 markerk += rule[indivShapeCode->get(genmember,itercounter)-1][0][2];

 // cout << "@";

 }

 }

 return 1;

}

int cleararray() {

 // initialises the array with zeros

 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 for (k=0;k<=15;k++)
 {
 array[i][j][k] = 0;
 }
 }
 }

 for (i=0;i<=(iter-1);i++) shapeCode[i] = 0;

 return 0;

}

 204

int initstack() {

 //initialise a stack[22] of rules with a random order, then start a loop
 //that is "iterations" long that picks a rule, and the below ensues.

 int n, ntemp;

 for(n=0;n<=21;n++) stack[n]=n;

 for(n=0;n<=21;n++) {
 int pos = (rand() >> 8) % 22;

 ntemp = stack[n];
 stack[n] = stack[pos];
 stack[pos] = ntemp;
 }

 return 0;

}

//applyflatrule applies the flatrule.

int applyflatrule()
{

 if (!(

(array[markeri+flatRule[0][0]][markerj+flatRule[0][1]][markerk+flatRule[0][2
]]==0)&&

(array[markeri+flatRule[1][0]][markerj+flatRule[1][1]][markerk+flatRule[1][2
]]==0)&&

(array[markeri+flatRule[2][0]][markerj+flatRule[2][1]][markerk+flatRule[2][2
]]==0)&&

(array[markeri+flatRule[3][0]][markerj+flatRule[3][1]][markerk+flatRule[3][2
]]==0)))
 {
 // cout << "Rule " << (selectRule + 1) << " would overlap; not
applied.\n";
 return 0;
 }

 if (
 (markeri+flatRule[0][0]>15)||
 (markerj+flatRule[0][1]>15)||
 (markerk+flatRule[0][2]>15)||
 (markeri+flatRule[1][0]>15)||
 (markerj+flatRule[1][1]>15)||
 (markerk+flatRule[1][2]>15)||
 (markeri+flatRule[2][0]>15)||
 (markerj+flatRule[2][1]>15)||
 (markerk+flatRule[2][2]>15)||
 (markeri+flatRule[3][0]>15)||
 (markerj+flatRule[3][1]>15)||

 205

 (markerk+flatRule[3][2]>15)||
 (markeri+flatRule[0][0]<0)||
 (markerj+flatRule[0][1]<0)||
 (markerk+flatRule[0][2]<1)||
 (markeri+flatRule[1][0]<0)||
 (markerj+flatRule[1][1]<0)||
 (markerk+flatRule[1][2]<1)||
 (markeri+flatRule[2][0]<0)||
 (markerj+flatRule[2][1]<0)||
 (markerk+flatRule[2][2]<1)||
 (markeri+flatRule[3][0]<0)||
 (markerj+flatRule[3][1]<0)||
 (markerk+flatRule[3][2]<1)) {
 // cout << "Rule " << (selectRule + 1) << " would exceed limits; not
applied.\n";
 return 0;
 }

 shapeCode[iter] = selectRule + 1;

 // cout << "* Rule " << (selectRule + 1) << " applied.\n";
 //cout << "@";

 iter++;

array[markeri+flatRule[0][0]][markerj+flatRule[0][1]][markerk+flatRule[0][2]
]=2;

array[markeri+flatRule[1][0]][markerj+flatRule[1][1]][markerk+flatRule[1][2]
]=3;

array[markeri+flatRule[2][0]][markerj+flatRule[2][1]][markerk+flatRule[2][2]
]=4;

array[markeri+flatRule[3][0]][markerj+flatRule[3][1]][markerk+flatRule[3][2]
]=5;

 return 1;
}

//applycircrule applies the circrule.

int applycircrule()
{

 if
(!(array[markeri+circRule[0]][markerj+circRule[1]][markerk+circRule[2]]==0))
 {
 // cout << "Rule " << (selectRule + 1) << " would overlap; not
applied.\n";
 return 0;
 }

 if ((markeri+circRule[0]>15)||
 (markerj+circRule[1]>15)||
 (markerk+circRule[2]>15)||
 (markeri+circRule[0]<0)||
 (markerj+circRule[1]<0)||
 (markerk+circRule[2]<1)) {

 206

 // cout << "Rule " << (selectRule + 1) << " would exceed limits; not
applied.\n";
 return 0;
 }

 shapeCode[iter]= selectRule + 1;

 // cout << "* Rule " << (selectRule + 1) << " applied.\n";
 //cout << ".";

 iter++;

 array[markeri+circRule[0]][markerj+circRule[1]][markerk+circRule[2]]=1;

 //move the marker, as a new circulation block has been placed
 markeri += circRule[0];
 markerj += circRule[1];
 markerk += circRule[2];

 initstack();
 stackmark=0;

 return 1;
}

// ok, this should be the generator function, called "generate"
// calls rules
int generate() {

 //set the size of shapeCode equal to iterations

 //shapeCode = new int[iterations];

 // these lines initialise the generation process by placing the
 // initial shape and setting the marker.

 array[7][7][0]=1;
 array[7][7][1]=1;

 markeri=7;
 markerj=7;
 markerk=1;

 //if this is uncommented rulea will not be applied.
 //array[7][6][1]=7;

 //if a rule cannot be applied, do nothing and move on to the next rule.
 //if no rules can be applied (eg. when the design has backed itself into
a corner)
 //then stop rule generation and print out a warning.

 stackmark = 0;

 iter=0;

 207

 while (iter<=iterations-1) {

 //select a random rule
 //selectRule=(rand()%21);

 //selectRule = 16;

 //select stack[stackmark]

 if (stackmark>21) {
 // cout << "Rule stack exhausted, no rules applied.\nNo more
rules can be applied to the last circulation block.\n";
 //cout << "FAIL\n";
 return -1;
 }

 selectRule=stack[stackmark];
 stackmark++;

 // cout << "Trying rule " << (selectRule + 1) << "...\n";

 if ((selectRule>=0)&&(selectRule<=15)) {

 for (a=0;a<=3;a++)
 {
 for (b=0;b<=2;b++)
 {
 flatRule[a][b]=rule[selectRule][a][b];
 }
 }

 applyflatrule();
 }

 if ((selectRule>=16)&&(selectRule<=21)) {

 for (a=0;a<=2;a++)
 {
 circRule[a]=rule[selectRule][0][a];
 }

 applycircrule();

 }

 }

 //cout << "END\n";

 return 0;
}

// txtexport saves a particular design as a text file

 208

int txtexport (int member)
{
 FILE* textfile = NULL;

 textfile = fopen("design.txt","w");
 if (!textfile) return -1;

 for (k=0;k<=15;k++)
 {
 fprintf (textfile, "Level %d \n", k);

 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 fprintf (textfile, "%d", indivArray->get(member,i,j,k)
);
 }
 fprintf (textfile, "\n");
 }
 fprintf (textfile, "\n");
 }

 fclose(textfile);

 return 1;

}

// vrmlexport saves a particular design as a VRML file

int vrmlexport (int member)
{
 FILE* vrmlfile = NULL;

 char filename[] = "foo.wrl";

 sprintf(filename, "design%d.wrl", member+1);

 vrmlfile = fopen(filename,"w");
 if (!vrmlfile) return -1;

 fprintf (vrmlfile, "#VRML V2.0 utf8\n\n");

 fprintf (vrmlfile, "DEF Helicopter Viewpoint {
 position 23.5 7.5 7.5
 orientation 0.1354 -0.9815 -0.1354 -1.589
 fieldOfView 0.8859
 description \"Helicopter\"
}
DEF Helicopter-TIMER TimeSensor { loop TRUE cycleInterval 3.333 },
DEF Helicopter-POS-INTERP PositionInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [23.5 7.5 7.5, 23.03 7.5 4.236, 22.16 7.5 1.328, 20.88 7.5 -
1.225,
 19.18 7.5 -3.43, 16.93 7.5 -5.364, 14.29 7.5 -6.934,
 11.5 7.5 -7.992, 8.666 7.5 -8.417, 5.563 7.5 -8.259,
 2.464 7.5 -7.587, -0.3014 7.5 -6.463, -2.666 7.5 -4.838,
 -4.793 7.5 -2.686, -6.514 7.5 -0.2056, -7.663 7.5 2.417,
 -8.251 7.5 5.379, -8.335 7.5 8.572, -7.914 7.5 11.65,
 -6.966 7.5 14.35, -5.416 7.5 16.89, -3.405 7.5 19.17,
 -1.102 7.5 20.99, 1.495 7.5 22.26, 4.52 7.5 23.09,
 7.658 7.5 23.43, 10.58 7.5 23.2, 13.37 7.5 22.35, 16.09 7.5 20.93,
 18.49 7.5 19.1, 20.36 7.5 16.99, 21.78 7.5 14.56, 22.79 7.5 11.77,

 209

 23.39 7.5 8.627, 23.5 7.5 7.5,] },
DEF Helicopter-ROT-INTERP OrientationInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [0.1354 -0.9815 -0.1354 -1.589, 0.1111 -0.9843 -0.1368 -1.793,
 0.09087 -0.9864 -0.1368 -1.982, 0.07394 -0.9879 -0.1365 -2.159,
 0.05918 -0.9889 -0.1365 -2.331, 0.04481 -0.9896 -0.1369 -2.515,
 0.03062 -0.9901 -0.137 -2.706, 0.01735 -0.9905 -0.1366 -2.891,
 0.005009 -0.9906 -0.137 -3.069, -0.008427 -0.9904 -0.1376 -3.263,
 -0.02233 -0.9903 -0.1374 -3.461, -0.03558 -0.99 -0.1366 -3.646,
 -0.04903 -0.9894 -0.1366 -3.824, -0.06424 -0.9885 -0.1367 -4.012,
 -0.08058 -0.9874 -0.1363 -4.199, -0.09789 -0.9859 -0.1361 -4.375,
 0.1194 0.9834 0.1365 -1.721, 0.1458 0.9799 0.1362 -1.523,
 0.1759 0.9751 0.1348 -1.332, 0.2109 0.9683 0.1336 -1.158,
 0.2596 0.9566 0.1322 -0.9785, 0.3278 0.9358 0.1293 -0.7977,
 0.4242 0.8971 0.1237 -0.6287, 0.5741 0.811 0.1123 -0.4734,
 0.8239 0.5614 0.07804 -0.3343, 0.9993 -0.03576 -0.004955 -0.2755,
 0.815 -0.574 -0.07917 -0.3353, 0.5834 -0.8045 -0.1112 -0.4652,
 0.4246 -0.8969 -0.1241 -0.6303, 0.3247 -0.9369 -0.1294 -0.8042,
 0.2615 -0.9561 -0.132 -0.9716, 0.2157 -0.9672 -0.134 -1.142,
 0.1785 -0.9746 -0.1355 -1.323, 0.1457 -0.98 -0.1358 -1.52,
 0.1354 -0.9815 -0.1354 -1.589,] },
ROUTE Helicopter-TIMER.fraction_changed TO Helicopter-POS-
INTERP.set_fraction
ROUTE Helicopter-POS-INTERP.value_changed TO Helicopter.set_position
ROUTE Helicopter-TIMER.fraction_changed TO Helicopter-ROT-
INTERP.set_fraction
ROUTE Helicopter-ROT-INTERP.value_changed TO Helicopter.set_orientation
DEF Sniper Viewpoint {
 position 20 7.5 20
 orientation 0.2874 -0.9504 -0.1191 -0.822
 fieldOfView 0.8859
 description \"Sniper\"
}
DEF Pedestrian Viewpoint {
 position 21.5 0.5 7.5
 orientation -0.0879 -0.9922 0.0879 -1.579
 fieldOfView 0.8859
 description \"Pedestrian\"
}
DEF Pedestrian-TIMER TimeSensor { loop TRUE cycleInterval 3.333 },
DEF Pedestrian-POS-INTERP PositionInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [21.5 0.5 7.5, 21.09 0.5 4.644, 20.33 0.5 2.099, 19.21 0.5 -
0.1345,
 17.72 0.5 -2.064, 15.75 0.5 -3.756, 13.44 0.5 -5.13,
 11 0.5 -6.055, 8.52 0.5 -6.427, 5.805 0.5 -6.289, 3.093 0.5 -5.701,
 0.6738 0.5 -4.718, -1.395 0.5 -3.296, -3.256 0.5 -1.413,
 -4.763 0.5 0.7576, -5.767 0.5 3.052, -6.282 0.5 5.644,
 -6.356 0.5 8.438, -5.987 0.5 11.13, -5.158 0.5 13.49,
 -3.802 0.5 15.72, -2.042 0.5 17.71, -0.02711 0.5 19.31,
 2.245 0.5 20.42, 4.892 0.5 21.14, 7.638 0.5 21.43,
 10.19 0.5 21.24, 12.64 0.5 20.49, 15.02 0.5 19.25,
 17.12 0.5 17.65, 18.76 0.5 15.81, 20 0.5 13.68, 20.88 0.5 11.24,
 21.4 0.5 8.486, 21.5 0.5 7.5,] },
DEF Pedestrian-ROT-INTERP OrientationInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [-0.0879 -0.9922 0.0879 -1.579, -0.072 -0.9935 0.0887 -1.784,
 -0.05883 -0.9943 0.0886 -1.975, -0.04783 -0.9949 0.08829 -2.153,
 -0.03825 -0.9954 0.08821 -2.327, -0.02895 -0.9957 0.08847 -2.512,

 210

 -0.01978 -0.9959 0.08848 -2.703, -0.01121 -0.996 0.08823 -2.89,
 -0.003234 -0.9961 0.08846 -3.069, 0.005443 -0.996 0.0889 -3.263,
 0.01442 -0.996 0.08874 -3.462, 0.02298 -0.9958 0.08825 -3.649,
 0.03168 -0.9956 0.08827 -3.828, 0.04153 -0.9952 0.08835 -4.017,
 0.05213 -0.9947 0.08816 -4.205, 0.06339 -0.9941 0.0881 -4.383,
 0.07743 -0.9931 0.08855 -4.572, -0.09474 0.9916 -0.08854 -1.512,
 -0.1146 0.9895 -0.08786 -1.318, -0.138 0.9866 -0.08738 -1.141,
 -0.171 0.9814 -0.0871 -0.9574, -0.2187 0.972 -0.08624 -0.7709,
 -0.2896 0.9534 -0.08445 -0.5937, -0.4125 0.9074 -0.0807 -0.4247,
 -0.6845 0.7261 -0.06483 -0.2594, -0.9984 -0.05563 0.00495 -0.1778,
 -0.6723 -0.7374 0.06531 -0.262, -0.4208 -0.9036 0.08021 -0.4158,
 -0.2898 -0.9533 0.08475 -0.5952, -0.2164 -0.9725 0.08625 -0.7777,
 -0.1723 -0.9812 0.08699 -0.9504, -0.1412 -0.9861 0.08773 -1.124,
 -0.1164 -0.9893 0.08832 -1.309, -0.0947 -0.9916 0.08822 -1.508,
 -0.0879 -0.9922 0.0879 -1.579,] },
ROUTE Pedestrian-TIMER.fraction_changed TO Pedestrian-POS-
INTERP.set_fraction
ROUTE Pedestrian-POS-INTERP.value_changed TO Pedestrian.set_position
ROUTE Pedestrian-TIMER.fraction_changed TO Pedestrian-ROT-
INTERP.set_fraction
ROUTE Pedestrian-ROT-INTERP.value_changed TO Pedestrian.set_orientation
DEF Architect Viewpoint {
 position 7.5 21 7.5
 orientation 1 0 0 -1.571
 fieldOfView 0.8859
 description \"Architect\"
}
\n");

 fprintf (vrmlfile, "NavigationInfo { type \"EXAMINE\" }\n\n");

 fprintf (vrmlfile, "Background { skyColor [1 1 1] }\n\n");

 fprintf (vrmlfile, "Transform { translation 7.5 -0.6 7.5 children [
Shape { appearance Appearance { material Material { diffuseColor 0.8 0.8 0.8
emissiveColor 0.8 0.8 0.8} } geometry Box { size 16 0.2 16 } }] }\n\n");

 fprintf (vrmlfile, "# Shape definitions\n\n");

 fprintf (vrmlfile, "PROTO circ [] { Shape { appearance Appearance{
material Material { diffuseColor 1 0.4 0 transparency 0.2 } } geometry
IndexedFaceSet { ccw TRUE solid TRUE convex FALSE\n");

 fprintf (vrmlfile, "coord Coordinate { point [-0.425 -0.425 0.425, -
0.425 0.425 0.425, -0.425 -0.425 0.5, -0.425 0.425 0.5, 0.425 -0.425 0.425,
0.425 -0.425 0.5, 0.425 0.425 0.425, 0.425 0.425 0.5, 0.5 -0.425 0.425, 0.5
0.425 0.425, -0.425 0.5 0.425, 0.425 0.5 0.425, -0.5 0.425 0.425, -0.5 -
0.425 0.425, 0.425 -0.5 0.425, -0.425 -0.5 0.425, -0.5 -0.425 -0.425, -0.425
-0.425 -0.425, 0.425 -0.5 -0.425, 0.425 -0.425 -0.425, -0.425 -0.5 -0.425,
0.425 0.5 -0.425, 0.425 0.425 -0.425, 0.5 -0.425 -0.425, 0.5 0.425 -0.425,
0.425 -0.425 -0.5, -0.425 -0.425 -0.5, 0.425 0.425 -0.5, -0.5 0.425 -0.425,
-0.425 0.425 -0.425, -0.425 0.5 -0.425, -0.425 0.425 -0.5, -0.5 0.5 0.5, -
0.5 0.5 -0.5, 0.5 0.5 0.5, 0.5 0.5 -0.5, -0.5 -0.5 0.5, 0.5 -0.5 0.5, 0.5 -
0.5 -0.5, -0.5 -0.5 -0.5] }\n");

 211

 fprintf (vrmlfile, "coordIndex [0, 1, 3, 2, -1, 4, 0, 2, 5, -1, 1, 6,
7, 3, -1, 6, 4, 5, 7, -1, 4, 6, 9, 8, -1, 1, 10, 11, 6, -1, 1, 0, 13, 12, -
1, 4, 14, 15, 0, -1, 13, 0, 17, 16, -1, 14, 4, 19, 18, -1, 18, 19, 17, 20, -
1, 21, 22, 6, 11, -1, 23, 24, 22, 19, -1, 23, 19, 4, 8, -1, 25, 26, 17, 19,
-1, 27, 25, 19, 22, -1, 28, 16, 17, 29, -1, 28, 29, 1, 12, -1, 20, 17, 0,
15, -1, 10, 1, 29, 30, -1, 9, 6, 22, 24, -1, 30, 29, 22, 21, -1, 31, 27, 22,
29, -1, 26, 31, 29, 17, -1, 30, 32, 34, 10, -1, 32, 30, 21, 33, -1, 11, 34,
35, 21, -1, 11, 10, 34, -1, 35, 33, 21, -1, 15, 36, 39, 20, -1, 15, 14, 37,
36, -1, 20, 38, 37, 18, -1, 18, 37, 14, -1, 39, 38, 20, -1, 2, 36, 37, 5, -
1, 2, 3, 32, 36, -1, 7, 34, 32, 3, -1, 7, 5, 37, 34, -1, 13, 16, 39, 36, -1,
13, 36, 32, 12, -1, 12, 32, 33, 28, -1, 16, 28, 33, 39, -1, 31, 33, 35, 27,
-1, 31, 26, 39, 33, -1, 25, 38, 39, 26, -1, 25, 27, 35, 38, -1, 23, 8, 37,
38, -1, 23, 38, 35, 24, -1, 24, 35, 34, 9, -1, 8, 9, 34, 37, -1] } }
}\n\n");

 fprintf (vrmlfile, "PROTO flat [] { Shape { appearance Appearance{
material Material { diffuseColor 0.8 0.8 0.8 transparency 0.2 } } geometry
Box { size 1.0 1.0 1.0 } } }\n\n");

 fprintf (vrmlfile, "PROTO face [] { Shape { appearance Appearance{
material Material { diffuseColor 0.4 0.6 0 transparency 0.2 } } geometry Box
{ size 1.0 1.0 1.0 } } }\n\n");

 fprintf (vrmlfile, "# Design follows.\n\n");

 for (k=0;k<=15;k++)
 {
 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {

 if (indivArray->get(member,i,j,k)==1) {
 fprintf (vrmlfile, "Transform { translation %d %d %d
children [circ {}] }\n\n", i, k, j);
 }

 if (indivArray->get(member,i,j,k)==2) {
 fprintf (vrmlfile, "Transform { translation %d %d %d
children [face {}] }\n\n", i, k, j);
 }

 if ((indivArray->get(member,i,j,k)==3)||(indivArray-
>get(member,i,j,k)==4)||(indivArray->get(member,i,j,k)==5)) {
 fprintf (vrmlfile, "Transform { translation %d %d %d
children [flat {}] }\n\n", i, k, j);
 }

 }
 }
 }

 fclose(vrmlfile);

 return 1;

}

int vrmlchamp (int champmember) {

 FILE* vrmlfile = NULL;

 212

 char filename[] = "foochamp.wrl";

 sprintf(filename, "champ%d.wrl", champmember+1);

 vrmlfile = fopen(filename,"w");
 if (!vrmlfile) return -1;

 fprintf (vrmlfile, "#VRML V2.0 utf8\n\n");

 fprintf (vrmlfile, "DEF Helicopter Viewpoint {
 position 23.5 7.5 7.5
 orientation 0.1354 -0.9815 -0.1354 -1.589
 fieldOfView 0.8859
 description \"Helicopter\"
}
DEF Helicopter-TIMER TimeSensor { loop TRUE cycleInterval 3.333 },
DEF Helicopter-POS-INTERP PositionInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [23.5 7.5 7.5, 23.03 7.5 4.236, 22.16 7.5 1.328, 20.88 7.5 -
1.225,
 19.18 7.5 -3.43, 16.93 7.5 -5.364, 14.29 7.5 -6.934,
 11.5 7.5 -7.992, 8.666 7.5 -8.417, 5.563 7.5 -8.259,
 2.464 7.5 -7.587, -0.3014 7.5 -6.463, -2.666 7.5 -4.838,
 -4.793 7.5 -2.686, -6.514 7.5 -0.2056, -7.663 7.5 2.417,
 -8.251 7.5 5.379, -8.335 7.5 8.572, -7.914 7.5 11.65,
 -6.966 7.5 14.35, -5.416 7.5 16.89, -3.405 7.5 19.17,
 -1.102 7.5 20.99, 1.495 7.5 22.26, 4.52 7.5 23.09,
 7.658 7.5 23.43, 10.58 7.5 23.2, 13.37 7.5 22.35, 16.09 7.5 20.93,
 18.49 7.5 19.1, 20.36 7.5 16.99, 21.78 7.5 14.56, 22.79 7.5 11.77,
 23.39 7.5 8.627, 23.5 7.5 7.5,] },
DEF Helicopter-ROT-INTERP OrientationInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [0.1354 -0.9815 -0.1354 -1.589, 0.1111 -0.9843 -0.1368 -1.793,
 0.09087 -0.9864 -0.1368 -1.982, 0.07394 -0.9879 -0.1365 -2.159,
 0.05918 -0.9889 -0.1365 -2.331, 0.04481 -0.9896 -0.1369 -2.515,
 0.03062 -0.9901 -0.137 -2.706, 0.01735 -0.9905 -0.1366 -2.891,
 0.005009 -0.9906 -0.137 -3.069, -0.008427 -0.9904 -0.1376 -3.263,
 -0.02233 -0.9903 -0.1374 -3.461, -0.03558 -0.99 -0.1366 -3.646,
 -0.04903 -0.9894 -0.1366 -3.824, -0.06424 -0.9885 -0.1367 -4.012,
 -0.08058 -0.9874 -0.1363 -4.199, -0.09789 -0.9859 -0.1361 -4.375,
 0.1194 0.9834 0.1365 -1.721, 0.1458 0.9799 0.1362 -1.523,
 0.1759 0.9751 0.1348 -1.332, 0.2109 0.9683 0.1336 -1.158,
 0.2596 0.9566 0.1322 -0.9785, 0.3278 0.9358 0.1293 -0.7977,
 0.4242 0.8971 0.1237 -0.6287, 0.5741 0.811 0.1123 -0.4734,
 0.8239 0.5614 0.07804 -0.3343, 0.9993 -0.03576 -0.004955 -0.2755,
 0.815 -0.574 -0.07917 -0.3353, 0.5834 -0.8045 -0.1112 -0.4652,
 0.4246 -0.8969 -0.1241 -0.6303, 0.3247 -0.9369 -0.1294 -0.8042,
 0.2615 -0.9561 -0.132 -0.9716, 0.2157 -0.9672 -0.134 -1.142,
 0.1785 -0.9746 -0.1355 -1.323, 0.1457 -0.98 -0.1358 -1.52,
 0.1354 -0.9815 -0.1354 -1.589,] },
ROUTE Helicopter-TIMER.fraction_changed TO Helicopter-POS-
INTERP.set_fraction
ROUTE Helicopter-POS-INTERP.value_changed TO Helicopter.set_position
ROUTE Helicopter-TIMER.fraction_changed TO Helicopter-ROT-
INTERP.set_fraction
ROUTE Helicopter-ROT-INTERP.value_changed TO Helicopter.set_orientation
DEF Sniper Viewpoint {
 position 20 7.5 20
 orientation 0.2874 -0.9504 -0.1191 -0.822
 fieldOfView 0.8859
 description \"Sniper\"

 213

}
DEF Pedestrian Viewpoint {
 position 21.5 0.5 7.5
 orientation -0.0879 -0.9922 0.0879 -1.579
 fieldOfView 0.8859
 description \"Pedestrian\"
}
DEF Pedestrian-TIMER TimeSensor { loop TRUE cycleInterval 3.333 },
DEF Pedestrian-POS-INTERP PositionInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [21.5 0.5 7.5, 21.09 0.5 4.644, 20.33 0.5 2.099, 19.21 0.5 -
0.1345,
 17.72 0.5 -2.064, 15.75 0.5 -3.756, 13.44 0.5 -5.13,
 11 0.5 -6.055, 8.52 0.5 -6.427, 5.805 0.5 -6.289, 3.093 0.5 -5.701,
 0.6738 0.5 -4.718, -1.395 0.5 -3.296, -3.256 0.5 -1.413,
 -4.763 0.5 0.7576, -5.767 0.5 3.052, -6.282 0.5 5.644,
 -6.356 0.5 8.438, -5.987 0.5 11.13, -5.158 0.5 13.49,
 -3.802 0.5 15.72, -2.042 0.5 17.71, -0.02711 0.5 19.31,
 2.245 0.5 20.42, 4.892 0.5 21.14, 7.638 0.5 21.43,
 10.19 0.5 21.24, 12.64 0.5 20.49, 15.02 0.5 19.25,
 17.12 0.5 17.65, 18.76 0.5 15.81, 20 0.5 13.68, 20.88 0.5 11.24,
 21.4 0.5 8.486, 21.5 0.5 7.5,] },
DEF Pedestrian-ROT-INTERP OrientationInterpolator {
 key [0, 0.03, 0.06, 0.09, 0.12, 0.15, 0.18, 0.21, 0.24, 0.27, 0.3,
 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.54, 0.57, 0.6, 0.63,
 0.66, 0.69, 0.72, 0.75, 0.78, 0.81, 0.84, 0.87, 0.9, 0.93, 0.96,
 0.99, 1,]
 keyValue [-0.0879 -0.9922 0.0879 -1.579, -0.072 -0.9935 0.0887 -1.784,
 -0.05883 -0.9943 0.0886 -1.975, -0.04783 -0.9949 0.08829 -2.153,
 -0.03825 -0.9954 0.08821 -2.327, -0.02895 -0.9957 0.08847 -2.512,
 -0.01978 -0.9959 0.08848 -2.703, -0.01121 -0.996 0.08823 -2.89,
 -0.003234 -0.9961 0.08846 -3.069, 0.005443 -0.996 0.0889 -3.263,
 0.01442 -0.996 0.08874 -3.462, 0.02298 -0.9958 0.08825 -3.649,
 0.03168 -0.9956 0.08827 -3.828, 0.04153 -0.9952 0.08835 -4.017,
 0.05213 -0.9947 0.08816 -4.205, 0.06339 -0.9941 0.0881 -4.383,
 0.07743 -0.9931 0.08855 -4.572, -0.09474 0.9916 -0.08854 -1.512,
 -0.1146 0.9895 -0.08786 -1.318, -0.138 0.9866 -0.08738 -1.141,
 -0.171 0.9814 -0.0871 -0.9574, -0.2187 0.972 -0.08624 -0.7709,
 -0.2896 0.9534 -0.08445 -0.5937, -0.4125 0.9074 -0.0807 -0.4247,
 -0.6845 0.7261 -0.06483 -0.2594, -0.9984 -0.05563 0.00495 -0.1778,
 -0.6723 -0.7374 0.06531 -0.262, -0.4208 -0.9036 0.08021 -0.4158,
 -0.2898 -0.9533 0.08475 -0.5952, -0.2164 -0.9725 0.08625 -0.7777,
 -0.1723 -0.9812 0.08699 -0.9504, -0.1412 -0.9861 0.08773 -1.124,
 -0.1164 -0.9893 0.08832 -1.309, -0.0947 -0.9916 0.08822 -1.508,
 -0.0879 -0.9922 0.0879 -1.579,] },
ROUTE Pedestrian-TIMER.fraction_changed TO Pedestrian-POS-
INTERP.set_fraction
ROUTE Pedestrian-POS-INTERP.value_changed TO Pedestrian.set_position
ROUTE Pedestrian-TIMER.fraction_changed TO Pedestrian-ROT-
INTERP.set_fraction
ROUTE Pedestrian-ROT-INTERP.value_changed TO Pedestrian.set_orientation
DEF Architect Viewpoint {
 position 7.5 21 7.5
 orientation 1 0 0 -1.571
 fieldOfView 0.8859
 description \"Architect\"
}
\n");

 fprintf (vrmlfile, "NavigationInfo { type \"EXAMINE\" }\n\n");

 fprintf (vrmlfile, "Background { skyColor [1 1 1] }\n\n");

 214

 fprintf (vrmlfile, "Transform { translation 7.5 -0.6 7.5 children [
Shape { appearance Appearance { material Material { diffuseColor 0.8 0.8 0.8
emissiveColor 0.4 0.4 0.4 } } geometry Box { size 16 0.2 16 } }] }\n\n");

 fprintf (vrmlfile, "# Shape definitions\n\n");

 fprintf (vrmlfile, "PROTO circ [] { Shape { appearance Appearance{
material Material { diffuseColor 1 0.4 0 transparency 0.2 } } geometry
IndexedFaceSet { ccw TRUE solid TRUE convex FALSE\n");

 fprintf (vrmlfile, "coord Coordinate { point [-0.425 -0.425 0.425, -
0.425 0.425 0.425, -0.425 -0.425 0.5, -0.425 0.425 0.5, 0.425 -0.425 0.425,
0.425 -0.425 0.5, 0.425 0.425 0.425, 0.425 0.425 0.5, 0.5 -0.425 0.425, 0.5
0.425 0.425, -0.425 0.5 0.425, 0.425 0.5 0.425, -0.5 0.425 0.425, -0.5 -
0.425 0.425, 0.425 -0.5 0.425, -0.425 -0.5 0.425, -0.5 -0.425 -0.425, -0.425
-0.425 -0.425, 0.425 -0.5 -0.425, 0.425 -0.425 -0.425, -0.425 -0.5 -0.425,
0.425 0.5 -0.425, 0.425 0.425 -0.425, 0.5 -0.425 -0.425, 0.5 0.425 -0.425,
0.425 -0.425 -0.5, -0.425 -0.425 -0.5, 0.425 0.425 -0.5, -0.5 0.425 -0.425,
-0.425 0.425 -0.425, -0.425 0.5 -0.425, -0.425 0.425 -0.5, -0.5 0.5 0.5, -
0.5 0.5 -0.5, 0.5 0.5 0.5, 0.5 0.5 -0.5, -0.5 -0.5 0.5, 0.5 -0.5 0.5, 0.5 -
0.5 -0.5, -0.5 -0.5 -0.5] }\n");

 fprintf (vrmlfile, "coordIndex [0, 1, 3, 2, -1, 4, 0, 2, 5, -1, 1, 6,
7, 3, -1, 6, 4, 5, 7, -1, 4, 6, 9, 8, -1, 1, 10, 11, 6, -1, 1, 0, 13, 12, -
1, 4, 14, 15, 0, -1, 13, 0, 17, 16, -1, 14, 4, 19, 18, -1, 18, 19, 17, 20, -
1, 21, 22, 6, 11, -1, 23, 24, 22, 19, -1, 23, 19, 4, 8, -1, 25, 26, 17, 19,
-1, 27, 25, 19, 22, -1, 28, 16, 17, 29, -1, 28, 29, 1, 12, -1, 20, 17, 0,
15, -1, 10, 1, 29, 30, -1, 9, 6, 22, 24, -1, 30, 29, 22, 21, -1, 31, 27, 22,
29, -1, 26, 31, 29, 17, -1, 30, 32, 34, 10, -1, 32, 30, 21, 33, -1, 11, 34,
35, 21, -1, 11, 10, 34, -1, 35, 33, 21, -1, 15, 36, 39, 20, -1, 15, 14, 37,
36, -1, 20, 38, 37, 18, -1, 18, 37, 14, -1, 39, 38, 20, -1, 2, 36, 37, 5, -
1, 2, 3, 32, 36, -1, 7, 34, 32, 3, -1, 7, 5, 37, 34, -1, 13, 16, 39, 36, -1,
13, 36, 32, 12, -1, 12, 32, 33, 28, -1, 16, 28, 33, 39, -1, 31, 33, 35, 27,
-1, 31, 26, 39, 33, -1, 25, 38, 39, 26, -1, 25, 27, 35, 38, -1, 23, 8, 37,
38, -1, 23, 38, 35, 24, -1, 24, 35, 34, 9, -1, 8, 9, 34, 37, -1] } }
}\n\n");

 fprintf (vrmlfile, "PROTO flat [] { Shape { appearance Appearance{
material Material { diffuseColor 0.8 0.8 0.8 transparency 0.2 } } geometry
Box { size 1.0 1.0 1.0 } } }\n\n");

 fprintf (vrmlfile, "PROTO face [] { Shape { appearance Appearance{
material Material { diffuseColor 0.4 0.6 0 transparency 0.2 } } geometry Box
{ size 1.0 1.0 1.0 } } }\n\n");

 fprintf (vrmlfile, "# Design follows.\n\n");

 for (k=0;k<=15;k++)
 {
 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {

 if (champArray->get(champmember,i,j,k)==1) {
 fprintf (vrmlfile, "Transform { translation %d %d %d
children [circ {}] }\n\n", i, k, j);
 }

 if (champArray->get(champmember,i,j,k)==2) {
 fprintf (vrmlfile, "Transform { translation %d %d %d
children [face {}] }\n\n", i, k, j);
 }

 215

 if ((champArray-
>get(champmember,i,j,k)==3)||(champArray-
>get(champmember,i,j,k)==4)||(champArray->get(champmember,i,j,k)==5)) {
 fprintf (vrmlfile, "Transform { translation %d %d %d
children [flat {}] }\n\n", i, k, j);
 }

 }
 }
 }

 fclose(vrmlfile);

 return 1;

}

// txtview show the design as text on the screen

int txtview (int member)
{

 cout << "\n\n j+ -->\n\n";
 cout << "i\n+\n\n|\n|\nv\n";

 for (k=0;k<=15;k++)
 {
 cout << "\nLevel " << k << "\n";

 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 cout << indivArray->get(member,i,j,k);
 }
 cout << "\n";
 }
 cout << "\n";
 }

 return 1;

}

// basic evaluation criteria calculation

int evalbasic(int member) {

 circno=2;
 flatno=0;

 for (i=0;i<=iterations-1;i++) {
 if ((indivShapeCode->get(member, i)<=16) && (indivShapeCode-
>get(member, i)>=1)) { flatno++; }
 if (indivShapeCode->get(member, i)>=17) { circno++; }
 }

 return 0;

}

// evalextents figures out the furthest extremities in all directions
int evalextents(int member) {

 216

 kmaxextent=-1;
 iminextent=-1;
 imaxextent=-1;
 jminextent=-1;
 jmaxextent=-1;

 for (k=15;k>=1;k--)
 {
 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 if ((indivArray->get(member,i,j,k)!=0) &&
(kmaxextent==-1)) {
 kmaxextent = k;
 }
 }
 }
 }

 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 for (k=0;k<=15;k++)
 {
 if ((indivArray->get(member,i,j,k)!=0) &&
(iminextent==-1)) { iminextent = i; }
 if (indivArray->get(member,i,j,k)!=0) { imaxextent =
i; }
 }
 }
 }

 for (j=0;j<=15;j++)
 {
 for (i=0;i<=15;i++)
 {
 for (k=0;k<=15;k++)
 {
 if ((indivArray->get(member,i,j,k)!=0) &&
(jminextent==-1)) { jminextent = j; }
 if (indivArray->get(member,i,j,k)!=0) { jmaxextent =
j; }
 }
 }
 }

return 0;

}

/// Like get(), but returns zero iff any of i1, i2, i3, or i4
/// are out of range of the array.

inline int getInf (const int i1,
 const int i2,
 const int i3,
 const int i4) {

 //fprintf(stderr,"getInf(%d,%d,%d,%d)\n", i1,i2,i3,i4);

 if ((i1 < 0) || (i1 >= (signed int) indivArray->s1) ||

 217

 (i2 < 0) || (i2 >= (signed int) indivArray->s2) ||
 (i3 < 0) || (i3 >= (signed int) indivArray->s3) ||
 (i4 < 0) || (i4 >= (signed int) indivArray->s4)) return 0;

 return indivArray->get (i1, i2, i3, i4);
 }

int evalbalconies(int member) {

 balcno = 0;

 for (i=0;i<=15;i++) {
 for (j=0;j<=15;j++) {
 for (k=2;k<=15;k++) {
 if ((getInf(member,i,j,k)==2)
 && (((getInf(member,i+1,j,k)==0)
 && (getInf(member,i+1,j,k-1)!=0)) ||
 ((getInf(member,i-1,j,k)==0 &&
 getInf(member,i-1,j,k-1)!=0)) ||
 ((getInf(member,i,j+1,k)==0) &&
 (getInf(member,i,j+1,k-1)!=0))
 || ((getInf(member,i,j-1,k)==0)
 && (getInf(member,i,j-1,k-1)!=0)))) {
 balcno++; }
 }
 }
 }

return 0;

}

int evalviews(int member) {

 int counterip, counterim, counterjp, counterjm;

 viewsip=0;
 viewsim=0;
 viewsjp=0;
 viewsjm=0;
 noviews=0;

 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 for (k=1;k<=15;k++)
 {
 if (indivArray->get(member,i,j,k)==2) {

 counterip=0;
 for (foo=(i+1);foo<=15;foo++) {
counterip+=indivArray->get(member,foo,j,k); }

 counterim=0;
 for (foo=(i-1);foo>=0;foo--) {
counterim+=indivArray->get(member,foo,j,k); }

 counterjp=0;
 for (foo=(j+1);foo<=15;foo++) {
counterjp+=indivArray->get(member,i,foo,k); }

 counterjm=0;
 for (foo=(j-1);foo>=0;foo--) {
counterjm+=indivArray->get(member,i,foo,k); }

 218

 if (counterip==0) { viewsip++; }
 if (counterim==0) { viewsim++; }
 if (counterjp==0) { viewsjp++; }
 if (counterjm==0) { viewsjm++; }
 if (counterip && counterim && counterjp &&
counterjm) { noviews++; }

 }
 }
 }
 }

return 0;

}

int viewshapecode(int member) {

 cout << "\n\nThe shape code for design No. " << member+1 << " is:\n";
 for (i=0;i<=iterations-1;i++) cout << indivShapeCode->get(member, i) <<
" ";
 cout << "\n";

 return 0;

}

int viewshapecodes() {

 int n,q;

 cout << "\n";

 for (n=1;n<=population;n++)
 {
 cout << "Design No. " << n << ":\n";
 for (q=0;q<=iterations-1;q++) { cout << indivShapeCode->get(n-1,
q) << " "; }
 cout << "\n";

 }

 return 0;

}

int generatepop() {

 int aa,bb;

 srand(time (NULL));

 for (aa=1;aa<=population;aa++)
 {

 cleararray();
 initstack();
 generate();

 //cout << "\n" << (time (NULL)) << "\n";

 // this condition ensures that every design has iterations no. of
rules
 if (shapeCode[iterations-1]!=0)

 219

 {

 for (bb=1;bb<=iterations;bb++) { indivShapeCode->set(aa-1, bb-1,
shapeCode[bb-1]); }

 for (i=0;i<=15;i++)
 {
 for (j=0;j<=15;j++)
 {
 for (k=0;k<=15;k++)
 { indivArray->set(aa-1,i,j,k,array[i][j][k]); }
 }
 }
 }

 else { aa--; }

 }

 return 0;

}

int scorepop() {

 int sccnt;

 maxScore=0;

 if (wtflatno>0) maxScore+=wtflatno;
 if (wtbalcno>0) maxScore+=wtbalcno;
 if (wtheight>0) maxScore+=wtheight;
 if (wtfooti>0) maxScore+=wtfooti;
 if (wtfootj>0) maxScore+=wtfootj;
 if (wtviewsip>0) maxScore+=wtviewsip;
 if (wtviewsim>0) maxScore+=wtviewsim;
 if (wtviewsjp>0) maxScore+=wtviewsjp;
 if (wtviewsjm>0) maxScore+=wtviewsjm;
 if (wtnoviews>0) maxScore+=wtnoviews;

 // The line below is wrong as it does not take into account possible
negative weightings.
 //
maxScore=(wtflatno+wtbalcno+wtheight+wtfooti+wtfootj+wtviewsip+wtviewsim+wtv
iewsjp+wtviewsjm+wtnoviews);

 for (sccnt=1;sccnt<=population;sccnt++) {

 evalbasic(sccnt-1);
 evalextents(sccnt-1);
 evalbalconies(sccnt-1);
 evalviews(sccnt-1);

// indivScore[sccnt-1] = ((abs(circno-goalcircno) * wtcircno) + (
abs(flatno-goalflatno) * wtflatno) + (abs(balcno-goalbalcno) * wtbalcno)
+ (abs(kmaxextent+1-goalheight) * wtheight) + (abs(imaxextent-
iminextent+1-goalfooti) * wtfooti) + (abs(jmaxextent-jminextent+1-
goalfootj) * wtfootj) + (abs(viewsip-goalviewsip) * wtviewsip) + (
abs(viewsim-goalviewsim) * wtviewsim) + (abs(viewsjp-goalviewsjp) *
wtviewsjp) + (abs(viewsjm-goalviewsjm) * wtviewsjm));

 indivScore[sccnt-1] = (float) (maxScore - (((fabs (round (
goalflatno / 100. * float(iterations)) - float(flatno)) / (floor (0.8 *
float(iterations))) * wtflatno)
 + (fabs (round (goalbalcno / 100. *
float(flatno)) - float(balcno)) / float(flatno) * wtbalcno)

 220

 + (fabs (float(goalheight) / 4. - (
float(kmaxextent) + 1.)) / 14. * wtheight)
 + (fabs (float(goalfooti) / 4. - (
float(imaxextent) - float(iminextent) + 1.)) / 15. * wtfooti)
 + (fabs (float(goalfootj) / 4. - (
float(jmaxextent) - float(jminextent) + 1.)) / 15. * wtfootj)
 + (fabs (round (goalviewsip / 100. *
float(flatno)) - float(viewsip)) / float(flatno) * wtviewsip)
 + (fabs (round (goalviewsim / 100. *
float(flatno)) - float(viewsim)) / float(flatno) * wtviewsim)
 + (fabs (round (goalviewsjp / 100. *
float(flatno)) - float(viewsjp)) / float(flatno) * wtviewsjp)
 + (fabs (round (goalviewsjm / 100. *
float(flatno)) - float(viewsjm)) / float(flatno) * wtviewsjm)
 + (fabs (round (goalnoviews / 100. *
float(flatno)) - float(noviews)) / float(flatno) * wtnoviews))));

 }

 return 0;

}

int htmlexport() {

 int designno;

 for (designno=1;designno<=population;designno++)
vrmlexport(sorted[designno-1]);

 FILE* htmlfile = NULL;

 htmlfile = fopen("shapeevolution.html","w");
 if (!htmlfile) return -1;

 fprintf (htmlfile, "<html>\n\n<head>\n\n<title>Shape Evolution
Output</title>\n\n<link rel=\"stylesheet\" href=\"shapeevolution.css\"
type=\"text/css\">\n\n</head>\n\n<body>\n\n");

 fprintf (htmlfile, "<table><tr><td><img src=\"seicon.gif\"
align=\"left\"></td>\n\n<td><h2>Shape Evolution Output</h2>\n\n<p>Population
size: %d
Iterations: %d
Generations:
%d
Average score: %f
Maximum score:
%f</p><p>Set mutation rate: %f
Actual mutation rate:
%f
Time elapsed: %d s</p></p></td></tr></table>\n\n",
population, iterations, generations, avScore, maxScore, mutationrate, (
float(mutacounter)/(float(population) * float (iterations) * float
(generations))), deltatee);

 fprintf (htmlfile, "<table
class=\"border\"><tr><th>Criterion</th><th>Target</th><th>Weight</th></tr>\n
");
 fprintf (htmlfile, "<tr><td>Apartments</td><td>%f
%%</td><td>%f</td></tr>\n", goalflatno, wtflatno);
 fprintf (htmlfile, "<tr><td>Balconies</td><td>%f
%%</td><td>%f</td></tr>\n", goalbalcno, wtbalcno);
 fprintf (htmlfile, "<tr><td>Height</td><td>%d m</td><td>%f</td></tr>\n",
goalheight, wtheight);
 fprintf (htmlfile, "<tr><td>Footprint i</td><td>%d
m</td><td>%f</td></tr>\n", goalfooti, wtfooti);
 fprintf (htmlfile, "<tr><td>Footprint j</td><td>%d
m</td><td>%f</td></tr>\n", goalfootj, wtfootj);
 fprintf (htmlfile, "<tr><td>Views in i+</td><td>%f
%%</td><td>%f</td></tr>\n", goalviewsip, wtviewsip);

 221

 fprintf (htmlfile, "<tr><td>Views in i-</td><td>%f
%%</td><td>%f</td></tr>\n", goalviewsim, wtviewsim);
 fprintf (htmlfile, "<tr><td>Views in j+</td><td>%f
%%</td><td>%f</td></tr>\n", goalviewsjp, wtviewsjp);
 fprintf (htmlfile, "<tr><td>Views in j-</td><td>%f
%%</td><td>%f</td></tr>\n", goalviewsjm, wtviewsjm);
 fprintf (htmlfile, "<tr><td>No views</td><td>%f
%%</td><td>%f</td></tr></table>\n\n", goalnoviews, wtnoviews);

 fprintf (htmlfile, "<p>Average and best scores per
generation:</p>\n<table class=\"border\">\n");

 int htmlgen;

 for (htmlgen=0;htmlgen<=generations-1;htmlgen++) {

 fprintf (htmlfile, "<tr><td><span
class=\"small\">%f</td><td>%f</td></tr>\n",
avScoreMonitor[htmlgen], bestScoreMonitor[htmlgen]);

 }

 fprintf (htmlfile, "</table>\n\n");

 for (designno=1;designno<=population;designno++) {

 fprintf (htmlfile, "<hr>\n\n<h4>Design N^o %d</h4>\n\n",
sorted[designno-1]+1);

 fprintf (htmlfile,"<p>Score: %f
Fitness:
%f</p>\n\n<p>Shape code:", indivScore[sorted[designno-1]],
fitness[sorted[designno-1]]);
 for (i=0;i<=iterations-1;i++) fprintf (htmlfile," %d",
indivShapeCode->get(sorted[designno-1],i));
 fprintf (htmlfile,"</p>\n\n");

 fprintf (htmlfile, "<p><a href=\"design%d.wrl\"
target=\"_new\"> View VRML model. </p>", sorted[designno-
1]+1);

 evalbasic(sorted[designno-1]);

 fprintf (htmlfile,"<p>N^o of flats: %d
\nN^o of circulation blocks: %d
\nVolume: %d
m³
\nTotal area: %d m²
\nApartment area: %d m²
\nCirculation area:
%d m²</p>\n\n", flatno, circno, ((flatno*256) +
(circno*64)), ((flatno*64) + (circno*16)), (flatno*64), (circno*16));

 evalextents(sorted[designno-1]);

 fprintf (htmlfile,"<p>Height: %d m
\nFootprint: %d
m × %d m</p>\n\n", ((kmaxextent+1) *4), ((imaxextent-
iminextent+1) *4), ((jmaxextent-jminextent+1) *4));

 evalbalconies(sorted[designno-1]);

 fprintf (htmlfile,"<p>N^o of flats with balconies:
%d
\nPercentage of flats with balconies: %f
%%</p>\n\n", balcno, ((float) ((float) balcno / (float) flatno) *100
));

 evalviews(sorted[designno-1]);

 222

 fprintf (htmlfile,"<p>Flats with views to +i: %d
\nFlats with views to -i: %d
\nFlats with views to +j:
%d
\nFlats with views to -j: %d
\nFlats with no
views: %d
\n</p>\n\n", viewsip, viewsim, viewsjp, viewsjm,
noviews);

 }

 fprintf (htmlfile,"</body>\n\n</html>");

 fclose(htmlfile);

 return 1;

}

int htmlreport() {

 int champno;

 FILE* htmlfile = NULL;

 htmlfile = fopen("shapeevolution.html","w");
 if (!htmlfile) return -1;

 fprintf (htmlfile, "<html>\n\n<head>\n\n<title>Shape Evolution
Output</title>\n\n<link rel=\"stylesheet\" href=\"shapeevolution.css\"
type=\"text/css\">\n\n</head>\n\n<body>\n\n");

 fprintf (htmlfile, "<table><tr><td rowspan=\"2\"><img src=\"seicon.gif\"
align=\"left\"></td>\n\n<td colspan=\"2\"><h2>Shape Evolution
Output</h2></td></tr>\n\n<tr><td>\n\n");

 fprintf (htmlfile,
"<table><tr><th> </th><th> </th></tr><tr><td>Population
size</td><td>%d</td></tr><tr><td>Iterations</td><td>%d</td
></tr><tr><td>Generations</td><td>%d</td></tr><tr><td>Set mutation
rate</td><td>%8.4f</td></tr><tr><td>Actual mutation
rate</td><td>%8.4f</td></tr><tr><td>Final average
score</td><td>%8.4f</td></tr><tr><td>Maximum
score</td><td>%8.4f</td></tr><tr><td>Champion
score</td><td>%8.4f</td></tr><tr><td>Champion
generation</td><td>%d</td></tr><tr><td>Time elapsed</td><td>%d
s</td></tr></table></td>\n\n", population, iterations, generations,
mutationrate, (float(mutacounter)/(float(population) * float (iterations)
* float (generations))), avScore, maxScore, champScore[0], champGen[0],
deltatee);

 fprintf (htmlfile,
"<td><table><tr><th>Criterion</th><th>Target</th><th>Weight</th></tr>\n");
 fprintf (htmlfile, "<tr><td>Apartments</td><td>%8.2f
%%</td><td>%8.2f</td></tr>\n", goalflatno, wtflatno);
 fprintf (htmlfile, "<tr><td>Balconies</td><td>%8.2f
%%</td><td>%8.2f</td></tr>\n", goalbalcno, wtbalcno);
 fprintf (htmlfile, "<tr><td>Height</td><td>%d
m</td><td>%8.2f</td></tr>\n", goalheight, wtheight);

 223

 fprintf (htmlfile, "<tr><td>Footprint i</td><td>%d
m</td><td>%8.2f</td></tr>\n", goalfooti, wtfooti);
 fprintf (htmlfile, "<tr><td>Footprint j</td><td>%d
m</td><td>%8.2f</td></tr>\n", goalfootj, wtfootj);
 fprintf (htmlfile, "<tr><td>Views in i+</td><td>%8.2f
%%</td><td>%8.2f</td></tr>\n", goalviewsip, wtviewsip);
 fprintf (htmlfile, "<tr><td>Views in i-</td><td>%8.2f
%%</td><td>%8.2f</td></tr>\n", goalviewsim, wtviewsim);
 fprintf (htmlfile, "<tr><td>Views in j+</td><td>%8.2f
%%</td><td>%8.2f</td></tr>\n", goalviewsjp, wtviewsjp);
 fprintf (htmlfile, "<tr><td>Views in j-</td><td>%8.2f
%%</td><td>%8.2f</td></tr>\n", goalviewsjm, wtviewsjm);
 fprintf (htmlfile, "<tr><td>No views</td><td>%8.2f
%%</td><td>%8.2f</td></tr></table>\n\n</td></tr></table>\n\n",
goalnoviews, wtnoviews);

 fprintf (htmlfile, "<!-- Average and best scores per generation:\n");

 int htmlgen;

 for (htmlgen=0;htmlgen<=generations-1;htmlgen++) {

 fprintf (htmlfile, "%f, %f\n", avScoreMonitor[htmlgen],
bestScoreMonitor[htmlgen]);

 }

 fprintf (htmlfile, "--!>\n\n");

 fprintf (htmlfile, "<p> </p>\n\n<table width=\"%d\"
cellpadding=\"0\" cellspacing=\"0\" class=\"chart\"><tr><td height=\"%d\"
valign=\"bottom\" class=\"best\">", (2*generations)+4, int (maxScore*100));

 int chartcol;

 for (chartcol=0;chartcol<=generations-1;chartcol++) {
 fprintf (htmlfile, "<img src=\"lime.png\" width=\"1\" height=\"%d\"
alt=\"%f\">", int (bestScoreMonitor[chartcol]*100),
bestScoreMonitor[chartcol]);
 fprintf (htmlfile, "<img class=\"average\" src=\"orange.png\"
width=\"1\" height=\"%d\" alt=\"%f\">", int (avScoreMonitor[chartcol]*100),
avScoreMonitor[chartcol]);
 }

 fprintf (htmlfile, "</td></tr></table>\n\n");

 // copy the contents of all the champ registers to the main registers,
so that the evaluation algorithms can find them.

 int copychamps;

 for (copychamps=0;copychamps<=champPool-1;copychamps++) {

 for (i=0;i<=iterations-1;i++) indivShapeCode-
>set(copychamps,i,champCode->get(copychamps, i));

 for (i=0;i<=15;i++) {
 for (j=0;j<=15;j++) {
 for (k=0;k<=15;k++) {
 indivArray->set(copychamps,i,j,k,champArray->get(copychamps,
i, j, k));
 }
 }
 }

 224

 }

 // include attributes of champion and wrl of champion

 for (champno=1;champno<=champPool;champno++) {

 fprintf (htmlfile, "<hr>\n\n<h4>Champ N^o %d</h4>\n\n",
champno);

 fprintf (htmlfile,"<p>Score: %f
Appeared in
generation: %d</p>\n\n<p>Shape code:", champScore[champno-1],
champGen[champno-1]);
 for (i=0;i<=iterations-1;i++) fprintf (htmlfile," %d",
champCode->get(champno-1,i));
 fprintf (htmlfile,"</p>\n\n");

 vrmlchamp(champno-1);

 fprintf (htmlfile, "<p><a href=\"champ%d.wrl\"
target=\"_new\"> View VRML model. </p>", champno);

 evalbasic(champno-1);

 fprintf (htmlfile,"<p>N^o of flats: %d
\nN^o of circulation blocks: %d
\nVolume: %d
m³
\nTotal area: %d m²
\nApartment area: %d m²
\nCirculation area:
%d m²</p>\n\n", flatno, circno, ((flatno*256) +
(circno*64)), ((flatno*64) + (circno*16)), (flatno*64), (circno*16));

 evalextents(champno-1);

 fprintf (htmlfile,"<p>Height: %d m
\nFootprint: %d
m × %d m</p>\n\n", ((kmaxextent+1) *4), ((imaxextent-
iminextent+1) *4), ((jmaxextent-jminextent+1) *4));

 evalbalconies(champno-1);

 fprintf (htmlfile,"<p>N^o of flats with balconies:
%d
\nPercentage of flats with balconies: %f
%%</p>\n\n", balcno, ((float) ((float) balcno / (float) flatno) *100
));

 evalviews(champno-1);

 fprintf (htmlfile,"<p>Flats with views to +i: %d
\nFlats with views to -i: %d
\nFlats with views to +j:
%d
\nFlats with views to -j: %d
\nFlats with no
views: %d
\n</p>\n\n", viewsip, viewsim, viewsjp, viewsjm,
noviews);

 }

 fprintf (htmlfile,"</body>\n\n</html>");

 fclose(htmlfile);

 return 1;

}

 225

int calcfitness() {

 float totScore=0;
 int fitgizmo;
 int selectionStrength=1;

 for (fitgizmo=0;fitgizmo<=population-1;fitgizmo++)
totScore+=indivScore[fitgizmo];

 avScore=totScore/population;

 for (fitgizmo=0;fitgizmo<=population-1;fitgizmo++)
fitness[fitgizmo]=pow((indivScore[fitgizmo]/avScore), selectionStrength);

 return 1;

}

int tournament() {

 // randomly pick two individuals, compare their fitnesses, and select
the best one
 // put markers for the intermediate population in intermediate[P]

 int tourneygizmo;

 for (tourneygizmo=0;tourneygizmo<=population-1;tourneygizmo++) {

 int redcorner = (rand () >> 8) % population;
 int bluecorner = (rand () >> 8) % population;

 //cout << "\n" << redcorner << "(" << indivScore[redcorner] << ") vs. "
<< bluecorner << "(" << indivScore[bluecorner] << ")\n";

 if (indivScore[redcorner]>=indivScore[bluecorner]) {
 intermediate[tourneygizmo]=redcorner;
 // cout << redcorner << " wins!\n";
 }
 else {
 intermediate[tourneygizmo]=bluecorner;
 //cout << bluecorner << " wins!\n";
 }

 }

 return 1;

}

int initxoverstack() {

 //initialise a xoverStack[iterations-1] of crossover positions with a
random order, then start a loop
 //that is "iterations" long that picks a rule, and the below ensues.

 int jen, jentemp;

 226

 for(jen=0;jen<=(iterations-2);jen++) xoverStack[jen]=jen;

 for(jen=0;jen<=(iterations-2);jen++) {
 int jenpos = (rand() >> 8) % (iterations-1);

 jentemp = xoverStack[jen];
 xoverStack[jen] = xoverStack[jenpos];
 xoverStack[jenpos] = jentemp;
 }

 return 0;

}

int xshuffler() {

 //initialise a xoverStack[iterations-1] of crossover positions with a
random order, then start a loop
 //that is "iterations" long that picks a rule, and the below ensues.

 int fiona, fionatemp;

 for(fiona=0;fiona<=(population-1);fiona++) xshuffle[fiona]=fiona;

 for(fiona=0;fiona<=(population-1);fiona++) {
 int fionapos = (rand() >> 8) % (population);

 fionatemp = xshuffle[fiona];
 xshuffle[fiona] = xshuffle[fionapos];
 xshuffle[fionapos] = fionatemp;
 }

 return 0;

}

int crossover() {

 // Crossover probabilistically.
 // make sure crossover does not create monsters
 // - try different crossover points until offspring is valid
 // - do embryogenesis and check phenotypes are valid
 // - if no crossover point yields valid offspring, just copy parents
over

 int xgizmo1;
 int xgizmo2;
 int xgizmo3;
 int xgizmo4;

 for(xgizmo1=0;xgizmo1<=(population-2);xgizmo1+=2) {

 initxoverstack();
 xshuffler();

 for (xgizmo2=0;xgizmo2<=(iterations-2);xgizmo2++) {

 for (xgizmo3=0;xgizmo3<=xoverStack[xgizmo2];xgizmo3++) {

 indivShapeCode->set(population+xgizmo1, xgizmo3, indivShapeCode-
>get(xshuffle[xgizmo1],xgizmo3));
 indivShapeCode->set(population+xgizmo1+1, xgizmo3, indivShapeCode-
>get(xshuffle[xgizmo1+1],xgizmo3));

 227

 }

 for (xgizmo3=xoverStack[xgizmo2]+1;xgizmo3<=(iterations-
1);xgizmo3++) {

 indivShapeCode->set(population+xgizmo1, xgizmo3, indivShapeCode-
>get(xshuffle[xgizmo1+1],xgizmo3));
 indivShapeCode->set(population+xgizmo1+1, xgizmo3, indivShapeCode-
>get(xshuffle[xgizmo1],xgizmo3));

 }

 // now must test if resulting two xoverShapeCodes generate valid
designs...

 //if yes, break loop 2, continue loop 1.

 if
((embryogenesis(population+xgizmo1)==1)&&(embryogenesis(population+xgizmo1+1
)==1)) {
 // cout << "."; //debugging
 break;
 }

 // cout << "X"; // debugging

 // if not, continue loop 2.

 // if the xoverStack is exhausted, just copy the individuals over as
they are.

 if (xgizmo2==(iterations-2)) {

 for (xgizmo4=0;xgizmo4<=iterations-1;xgizmo4++) {

 indivShapeCode->set(population+xgizmo1, xgizmo4, indivShapeCode-
>get(xshuffle[xgizmo1],xgizmo4));
 indivShapeCode->set(population+xgizmo1+1, xgizmo4,
indivShapeCode->get(xshuffle[xgizmo1+1],xgizmo4));
 }

 // cout << "X"; // debugging

 break;
 }

 }

 }

 return 1;

}

int copydown() {

// Copies the top half of the indivShapeCode array to the bottom half

 int copypop;
 int copyiter;

 for (copypop=0;copypop<=population-1;copypop++) {

 for (copyiter=0;copyiter<=iterations-1;copyiter++) {

 228

 indivShapeCode->set(copypop, copyiter, indivShapeCode-
>get(population+copypop, copyiter));

 }

 }

 return 1;

}

int mutate() {

 // Mutates every bit of the population according to mutationrate
 // Mutation must be selective lest it invalidates designs too often
 // Only mutate to circulation rule

 copydown();

 int mutapop;
 int mutaiter;

 int mutation;

 for (mutapop=0;mutapop<=population-1;mutapop++) {

 for (mutaiter=0;mutaiter<=iterations-1;mutaiter++) {

 // If mutationrate allows, change a bit to a new one (within top
population), selected randomly

 if (((rand () >> 8) % 1000000) < (int (
(mutationrate*1000000.0)))) {

 mutation = (((rand () >> 8) % 22) + 1);

 indivShapeCode->set(population+mutapop, mutaiter, mutation);

 // check validity of mutant

 if ((embryogenesis(population+mutapop)==1) && ((indivShapeCode-
>get(mutapop, mutaiter)) != mutation)) {

 // if valid, copy down to bottom population

 indivShapeCode->set(mutapop, mutaiter, mutation);

 //cout << "\n Mutated gene " << mutaiter << " of individual " <<
mutapop << "\n";

 mutacounter++;
 // cout <<"m" << mutapop << " "; // debugging

 }

 else {

 indivShapeCode->set(population+mutapop, mutaiter,
indivShapeCode->get(mutapop, mutaiter));

 //cout << "M"; // debugging

 }

 }

 }

 229

 }

 return 1;

}

int comparecodes(int champid, int individ) {

 int comparador;

 int sameornot=1;

 for (comparador=0;comparador<=iterations-1;comparador++) {

 if (champCode->get(champid,comparador)!=indivShapeCode-
>get(individ,comparador)) {

 sameornot=0;
 break;

 }

 }

 return sameornot;

}

// main does nothing but call generator and vrmlexport.

int main() {

 fileinput();

 generatepop();

 int maingizmo; //looping variable
 int darwin; //looping variable

 int champgizmo; //looping variable
 int billboard; //looping variable
 int shiftdown; //looping variable

 // this variable should be changed to 1 if
 // this generation managed to produce a champion,
 // i.e. one of its top performers placed in the "billboard"
 int placed=0;

 cout << "\nProgress:\n";

 deltatee = time(NULL);

 for (maingizmo=0;maingizmo<=generations-2;maingizmo++) {

 scorepop();

 sortpop();

 calcfitness();

 avScoreMonitor[maingizmo]=avScore;
 bestScoreMonitor[maingizmo]=indivScore[sorted[0]];

 230

 // start routine for picking champions

 placed=0;

 for (champgizmo=0;champgizmo<=champPool-1;champgizmo++) {

 for (billboard=0;billboard<=champPool-1;billboard++) {

 // if the new design scores higher than an existing champ, or
 // if the new design has the same score with an existing champ and
it's not identical it should be placed on the champ list

 if ((indivScore[sorted[champgizmo]] > champScore[billboard]) || (
(indivScore[sorted[champgizmo]] == champScore[billboard]) &&
(comparecodes(billboard, sorted[champgizmo])!=1))) {

 placed=1;

 //routine for shifting down lower positions...

 for (shiftdown=champPool-1;shiftdown>=billboard+1;shiftdown--) {

 champScore[shiftdown]=champScore[shiftdown-1];
 champGen[shiftdown]=champGen[shiftdown-1];

 for (i=0;i<=iterations-1;i++) champCode-
>set(shiftdown,i,champCode->get(shiftdown-1, i));

 for (i=0;i<=15;i++) {
 for (j=0;j<=15;j++) {
 for (k=0;k<=15;k++) {
 champArray->set(shiftdown,i,j,k,champArray-
>get(shiftdown-1, i, j, k));
 }
 }
 }

 }

 //routine for copying new champion into the current position
(billboard)

 champScore[billboard]=indivScore[sorted[champgizmo]];
 champGen[billboard]=maingizmo+2;

 for (i=0;i<=iterations-1;i++) champCode-
>set(billboard,i,indivShapeCode->get(sorted[champgizmo], i));

 for (i=0;i<=15;i++) {
 for (j=0;j<=15;j++) {
 for (k=0;k<=15;k++) {
 champArray->set(billboard,i,j,k,indivArray-
>get(sorted[champgizmo], i, j, k));
 }
 }
 }

 // once this individual from the current generation has found
its place, stop searching for it.
 break;

 }

 // if the design is identical it should be ignored, but set placed=1

 if (comparecodes(billboard, sorted[champgizmo])==1) {

 placed=1;

 231

 break;
 }

 }

 if (placed=0) break;

// if (indivScore[sorted[0]] >= champScore) {
//
// champScore=indivScore[sorted[0]];
// champGen=maingizmo+1;
//
// for (i=0;i<=iterations-1;i++) champCode[i]=indivShapeCode-
>get(sorted[0], i);
//
// for (i=0;i<=15;i++) {
// for (j=0;j<=15;j++) {
// for (k=0;k<=15;k++) {
// champArray[i][j][k]=indivArray->get(sorted[0], i,
j, k);
// }
// }
// }

 }

 tournament();

 crossover();

 mutate();

 for (darwin=0;darwin<=population-1;darwin++) {
 embryogenesis(darwin);
 if (embryogenesis(darwin)!=1) {

 cout << "\nHoly Cow! Individual " << darwin << " is a hideous
monster!\n"; // break programme if an invalid individual somehow infiltrates
the population

 return 0;
 }
 }

 cout << "*";

 }

 scorepop();

 sortpop();

 calcfitness();

 avScoreMonitor[generations-1]=avScore;
 bestScoreMonitor[generations-1]=indivScore[sorted[0]];

 deltatee = time(NULL) - deltatee;

 htmlreport();

 cout << "\n--- Shape Evolution completed.\n";

 //cout << "\nTotal mutations: " << mutacounter << "\n";

 232

 //txtview();
 //txtexport();
 //vrmlexport(0);

 //viewshapecode(0);

 //Be careful with the order the evaluation functions are called.
 //Some are referencing variables produced by earlier evaluation
 //functions. This is in order to avoid evaluating too many loops.

 //evalbasic(0);

 //cout << "No of flats: " << flatno << "\n";
 //cout << "No of circulation blocks: " << circno << "\n";
 //cout << "Volume: " << ((flatno*256) + (circno*64)) << " m^3\n";
 //cout << "Total area: " << ((flatno*64) + (circno*16)) << " m^2\n";
 //cout << "Apartment area: " << (flatno*64) << " m^2\n";
 //cout << "Circulation area: " << (circno*16) << " m^2\n";

 //evalextents(0);

 //cout << "Height: " << ((kmaxextent+1) *4) << " m\n";
 //cout << "Footprint: " << ((imaxextent-iminextent+1) *4) << " m x "
<< ((jmaxextent-jminextent+1) *4) << " m\n";

 //evalbalconies(0);

 //cout << "No of flats with balconies: " << balcno << "\n";
 //cout << "Percentage of flats with balconies: " << ((float) ((float)
balcno / (float) flatno) *100) << " %\n";

 //evalviews(0);

 //cout << "Flats with views to +i: " << viewsip << "\n";
 //cout << "Flats with views to -i: " << viewsim << "\n";
 //cout << "Flats with views to +j: " << viewsjp << "\n";
 //cout << "Flats with views to -j: " << viewsjm << "\n";
 //cout << "Flats with no views: " << noviews << "\n";

 //viewshapecodes();

 return 1;
}

